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Abstract: During wastewater treatment and drinking water production, significant 

amounts of ferric sludge (comprising ferric oxy-hydroxides and FePO4) are generated 

that require disposal. This practice has a major impact on the overall treatment cost as 

a result of both chemical addition and the disposal of the generated chemical sludge. 

Iron sulfide (FeS) precipitation via sulfide addition to ferric phosphate (FePO4) sludge 

has been proven as an effective process for phosphate recovery. In turn, iron and 

sulfide could potentially be recovered from the FeS sludge, and recycled back to the 

process. In this work, a novel process was investigated at lab scale for the recovery of 

soluble iron and sulfide from FeS sludge. Soluble iron is regenerated 

electrochemically at a graphite anode, while sulfide is recovered at the cathode of the 

same electrochemical cell. Up to 60±18% soluble Fe and 46±11% sulfide were 

recovered on graphite granules for up-stream reuse. Peak current densities of 9.5 ± 4.2 

A m-2 and minimum power requirements of 2.4 ± 0.5 kWh kg Fe-1 were reached with 

real full strength FeS suspensions. Multiple consecutive runs of the electrochemical 

process were performed, leading to the successful demonstration of an integrated 

process, comprising FeS formation/separation and ferric/sulfide electrochemical 

regeneration. 
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1 Introduction 

During conventional wastewater treatment, ferric salts (either as Fe2(SO4)3 or FeCl3) 

are typically dosed into primary influent (pre-precipitation), into the aerobic tank (co-

precipitation) or into secondary effluent (post-precipitation), to achieve phosphorus 

precipitation and coagulation of organic solids. The precipitate thus obtained consists 

mostly of FePO4, ferric (oxy)hydroxides and organic solids. This process entails 

significant costs associated mostly with the addition of the ferric salts and disposal of 

the chemical sludge thus generated. This ferric sludge can be used as a source of 

phosphorus and ferric iron. The latter, if recovered, can be re-utilized in the process, 

potentially creating significant savings for the water industry. The effectiveness of 

sulfide addition to ferric sludge (as phosphate or oxy-hydroxide) to achieve FeS 

precipitation and phosphorus recovery has been already proven (Ripl et al. 1988, Kato 

et al. 2006, Mejia Likosova et al. 2013b). In such a method, the addition of sulfide to 

the ferric sludge reduces ferric iron (Fe(III)) to ferrous iron (Fe(II)) leading to the 

precipitation of FeS particles, thus separating iron from any phosphate and opening to 

a potential route for iron recovery. After the recovery of phosphorus, iron and sulfur 

can potentially be separated and recycled within the process, i.e. iron can be recycled 

as Fe(II/III) to the phosphate precipitation and coagulation process while sulfide can 

be reused to generate more FeS from ferric sludge.  

Sulfide is an electrochemically active compound and the anodic oxidation of aqueous 

sulfide has been studied and demonstrated by different authors (Lalvani and Shami 

1986, Kelsall et al. 1999, Ateya et al. 2003, Ateya et al. 2005, Dutta et al. 2008, Dutta 

et al. 2010, Pikaar et al. 2011). The range of oxidation products is affected by anode 

materials and imposed potentials (Kelsall et al. 1999), and include elemental sulfur 

(S0), polysulfide (Sn
2-), sulfate (SO4

2-), sulfite (SO3
2-) and thiosulfate (S2O3

2-).  

Efficient removal of sulfide from dilute aqueous solutions at circum-neutral pH via 

oxidation to S0 has been demonstrated on graphite anodes (Dutta et al. 2008), 

whereby elemental sulfur was deposited onto the anode surface. Sulfur was 

effectively removed because it adsorbed onto the anode surface. Dutta and co-workers 

demonstrated a method for in-situ recovery of the electrodeposited S0 on the 

electrode. This method consists of switching the polarity of the electrodes, i.e. 

periodic switching between anodic sulfide oxidation to S0 and cathodic sulfur 

reduction to sulfide. During cathodic operation, the previously deposited S0 is reduced 



to sulfide. As a result, a concentrated sulfide solution can be recovered from the same 

electrochemical cell used for the sulfide oxidation to sulfur. However, a big fraction 

of the elemental sulfur was reduced to polysulfides when batch experiments were 

performed without pH control, during which the pH varied between 7.3-11.4 (Dutta et 

al. 2008). 

In a previous study, we found that freshly generated FeSx particles are reactive 

towards anodic oxidation to elemental sulfur on graphite electrodes (Mejia Likosova 

et al. 2013a). 

In this work, we demonstrate the feasibility of an electrochemical process for the 

resource-efficient recovery of soluble iron and sulfide from FeS sludge. The process 

is based on the electrochemical oxidation of sulfide (in the form of particulate FeS) to 

S0 (reaction 1), and partially sulfate (reaction 2) (Mejia Likosova et al. 2013a), with 

consequent release of soluble ferrous ions in solution. Soluble Fe2+ is then oxidised to 

ferric hydroxide, and subsequently to free ferric ions (reaction 4) as the pH drops to < 

3 due to the acidity generated by the ferric hydroxide (reaction 3) and sulfate (reaction 

2) formation. As the formed S0 is bound to the anode surface, it can be subsequently 

reduced back to sulfide upon polarity switching of the electrode, the only net input 

being electricity. In the system described above, the reactions occurring at the anode 

and their redox potentials vs. SHE are listed in Table 1.  

Table 1.  Anode and Cathode reactions and their redox potential. 

Oxidation Reaction (Anode) Redox Potential [V] 

(1) FeSàFe2++ S0+2e-  +0.06I 

(2) FeS(s)+4H2OàFe2++SO4
2-+8H++8e-  -0.09II 

(3) Fe2++3H2OàFe(OH)3+3H++e- (at pH>3) 0.51III (at pH 3.0) 

(4) Fe2+àFe3++e- (at pH<3) +0.771IV 

Reduction Reaction (Cathode) Redox Potential [V] 

(5) S0+2e-àS2-                                         -0.476I 

I Standard redox potential calculated based on a FeS solubility constant of Ksp=8x10-19 (Perry and Green 
2008) and a standard redox potential of -0.476V for the reaction S0+2e-→S2- (Dutta et al. 2008). 
II Standard redox potential calculated based on a standard redox potential of E0=-0.22V for the reaction 
S2-+4H2O→SO4

2-+8H++8e- (Drake et al. 2006).  
III Redox potential at pH 3 calculated with the Nernst equation after calculating a standard redox potential 



(pH 0) of E°=-0.612 V based on a Fe(OH)3 solubility constant of Ks= 4x10-38 at 25°C and a water self-
ionization constant of Kw=1x10-14 at 25°C (Perry and Green 2008).  
IV (Bard and Faulkner 2001). 

In this study, the recovery of soluble iron and sulfide according to the proposed 

process has been demonstrated. Additionally, the feasibility of the full phosphorus 

and ferric recovery process with real sludge was established. For this work, carbon-

based electrode materials were chosen, based on their proven reactivity with FeS, low 

cost and wide availability. 

2 Materials and methods 

2.1 Preparation of synthetic FeS precipitate and dilute synthetic, dilute real and 

full-strength real FeS suspensions for electrochemical anodic oxidation 

experiments 

Synthetic FeS precipitate was prepared by reaction of synthetic 0.1 M ferric 

phosphate (FePO4*4H2O, 24% Fe) with continuing dosing of a 0.8 M sodium sulfide 

solution (Na2S*9H2O, reagent grade), up to 1.75 S:Fe molar ratio at pH 4 (these 

conditions were found to be optimal for FeS formation and separation) within 30 

minutes as described elsewhere (Mejia Likosova et al. 2013b). The pH was controlled 

using a 3 M HCl solution. The reaction of ferric phosphate and sulfide, at a S:Fe 

molar ratio of 1.75 and slightly acidic conditions, can be represented by the following 

stoichiometry (Kato et al. 2006, Firer et al. 2008): 

!"!"!   ! + 1.75!!! → !"! ! + 0.5! !
! + 0.25!!! + !!!"!! + !! (6) 

The resulting synthetic precipitate is a combination of nanoparticulate mackinawite 

(FeS) and elemental sulfur (S0) (Mejia Likosova et al. 2013a). The suspension was 

divided into two 50-mL Falcon tubes without leaving any air headspace and 

centrifuged at 2,100 g for 5 minutes to enhance separation of the gravity-settled FeS 

particles. The supernatant with residual soluble sulfide and phosphate in solution was 

removed. A dilute synthetic FeS suspension (103±46 mg Fe L-1) was prepared using 

4.2 mL of the settled FeS particles diluted up to 300 mL in a 0.03 M NaCl solution. 

The salt addition was provided to sustain the selective migration of Na+ ions to the 

cathode throughout the reaction in order to guarantee the electroneutrality of both 



anodic and cathodic compartments, in addition to keeping the internal resistance as 

low as possible (see section 2.2). 

Following the same process described above, real chemical ferric sludge (with 

following concentrations: total iron 9.4±0.8 g Fe L-1, chemical oxygen demand (COD) 

17±3 g COD L-1, total suspended solids (TSS) 57±8 g TSS L-1 and volatile suspended 

solids (VSS) 18±2 g VSS L-1) from a local full-scale drinking water treatment plant 

(DWTP) was used to precipitate real FeS sludge.  After sulfide addition as described 

above, the resulting sludge was divided into three 50-mL Falcon tubes without 

leaving any air headspace and centrifuged at 2,100 g for 15 minutes to enhance 

sedimentation of the FeS particulates. A dilute real FeS suspension (84±11 mg Fe L-1) 

was prepared similarly as described above for the dilute synthetic FeS suspension.  A 

full-strength real FeS suspension (3.0±0.2 g Fe L-1) was prepared using the settled FeS 

sludge from the three Falcon tubes (~30 mL in total) and diluted using 300 mL of a 

0.15 M NaCl solution.  

2.2 Two-compartment electrochemical reactor design and operation 

The two-compartment electrochemical cell consisted of 2 parallel Perspex frames 

(internal dimensions of 20x5x2 cm) separated by a monovalent cation exchange 

membrane (MVCEM, CMS Monovalent Selective, Ameridia, USA). Three sets of 

experiments were performed using three different carbon-base electrodes: graphite 

granules (El Carb 100, Graphite Sales Inc., USA), graphite plates (Morgan AM&T, 

Sydney) and Reticulated Vitreous Carbon (RVC, Duocel RVC Foam, ERG Materials 

and Aerospace Corporation, USA). In the first set of experiments, both compartments 

were filled with graphite granules as working and counter electrodes (WE, CE). The 

graphite granules have diameters of 1.5-6 mm and a porosity of 45%, leading to a 

mean nominal surface area of 1,000 cm2 in each compartment (Freguia et al. 2008). 

Before using the graphite granules, a pre-treatment with acid and base to remove 

impurities was performed as explained elsewhere (Dutta et al. 2008). Graphite plates 

(100 cm2 in projected surface area) were embedded in the graphite granules and used 

as current collectors in both anode and cathode. In the second set of experiments, only 

graphite plates were used as working and counter electrodes, reducing the nominal 

contact area to 100 cm2 each. Finally, in the third set of experiments, 2 rectangular 

pieces of reticulated vitreous carbon (RVC) foam (pore size 20 PPI, 3% density) with 



dimensions 20x5x2 cm each (nominal surface area 2,200 cm2) were used as working 

and counter electrodes. Figure 1 gives a schematic diagram of the 2-compartment 

electrochemical cell. 

Fig. 1. Schematic diagram of the 2-compartment electrochemical cell. FeS suspension is recirculated 

through the anode compartment, were oxidation of FeS particles to S0 and soluble iron occurs. 

Likewise, S0 is reduced to S2- at the cathode after reversing the polarities of the electrodes. 

FeS suspension was recirculated at 6 L h-1 around the anode compartment, where 

reactions 1-4 occurred. The total anode liquid volume (inclusive of an external bottle 

in the recirculation loop) was 300 mL. The FeS suspension was continuously stirred 

by means of a magnetic stirrer in order to avoid settling of the FeS particles and to 

guarantee a homogeneous feed to the anode. Previously deposited elemental sulfur is 

reduced to sulfide at the cathode. The catholyte was initially water only and it was 

recirculated around the cathode compartment. Sulfide formation and Na+ migration 

from the anode increased the catholyte salinity as the reaction proceeded. The 

recirculation was set to 6 L h-1 using a multi-channel peristaltic pump. 

At the anode, simultaneous oxidation of FeS to sulfate and Fe2+ to Fe(OH)3 (equations 

2 and 3) drove the pH down until iron became soluble (pH < 3) (Mejia Likosova et al. 

2013a). Conversely, at the cathode, sulfide generation increased the solution pH to 

>10. At the anode, FeCl3 was recovered in soluble form due to the acidic conditions 

created. Na+ cations migrated through the MVCEM to the cathode forming a solution 

of NaHS. Two pH probes (Ionode Pty Ltd., Australia) were placed in the anodic and 

V 

e- 

  Fe2+/Fe3+,  S0 

Particulate FeS 

HS- 

S0 

ANODE CATHODE 

e- 

MVCEM 

FeS 
Suspension
+ NaCl 

pH 
meter 

FeCl3 

Cl- Na+ 

Na+! 
H2O 

pH 
meter 

RE 

Potentiostat 

NaHS 
Gas Bag Gas Bag 

Sampling port 



cathodic recirculation lines to measure the pH of both compartments. A glass body 

Hg/Hg2Cl2 Calomel reference electrode, KCl 3.5 M, (Select Scientific, E0 = +0.250 

mV vs. SHE) was placed near the anode. Anode and cathode were connected through 

a potentiostat (VSP Modular 5 channels potentiostat, BioLogic Science Instrument, 

France) and the anode half-cell potential was controlled to either +0.8 V vs. SHE or 

+1.3V vs. SHE.  

Batch experiments were run sequentially 3-4 times, each time reversing the cell 

polarity to enable dissolution of the elemental sulfur precipitated in the previous run. 

Three hundred mL of the FeS suspension (see section 2.1) were used to fill the anodic 

compartment. Reverse Osmosis (RO) water was used to fill the cathodic compartment 

(300 mL inclusive of an external bottle in the recirculation loop). Before starting with 

the batch runs, one of the two electrodes (anode) was pre-loaded with elemental sulfur 

(S0) via electrochemical oxidation of ferrous sulfide, with the cathode operating as 

hydrogen-producing counter electrode (this was named Run 0). Anaerobic conditions 

were achieved by sparging both compartments and solutions with nitrogen. Two gas 

bags filled with nitrogen were connected to the recirculation loops of anode and 

cathode, to avoid the intrusion of oxygen into the system by applying a positive 

pressure of nitrogen. Each run lasted for 1 to 70 h depending on the electrode (see 

section 3.1) and sludge strength. The anode potential, as well as the current were 

recorded using the EC-Lab software for the VSP BioLogic potentiostat (see section 

2.3). Liquid samples from both anode and cathode were collected throughout the 

experiment for the measurement of iron species and various sulfur compounds, 

respectively (methods detailed in section 2.4). 

2.3 Potentiostatic measurements and calculations 

Potentiostatic measurements and control were performed using a VSP Modular 5 

channels potentiostat (BioLogic Science Instrument, France). Current and voltage 

data were recorded every 60 s using the EC-Lab® software. Current density was 

defined as the average current in ampere per square metre of projected electrode 

surface area (0.01 m2 in all experiments, equivalent to the membrane size). 



2.4 Chemical analyses 

Ion Chromatography (IC, Dionex 2010i) was used to measure the different anionic 

sulfur species, i.e. sulfide, sulfate, sulfite and thiosulfate, from anode and cathode 

according to the method developed by Keller-Lehmann et al. (2006). Samples were 

preserved in previously prepared Sulfide Anti-Oxidant Buffer (SAOB) solution prior 

to IC analysis. SAOB solution was prepared following the guidelines explained 

elsewhere (Keller-Lehmann et al. 2006, Dutta et al. 2008). Total iron and sulfur in the 

anode and cathode samples were determined using Inductively Coupled Plasma – 

Optical Emission Spectroscopy (ICP-OES, Perkin Elmer Optima 3300DV) as 

explained elsewhere (Mejia Likosova et al. 2013b). The determination of total iron 

was possible after acidic digestion of the sample (5% and 10% nitric acid when 

feeding synthetic FeS and real FeS suspension to the anode, respectively). Before 

acidic digestion, oxidation of the sulfide present in the samples to sulfate (SO4
2-) was 

performed under alkaline conditions (pH>12) with excess peroxide (Cadena and 

Peters 1988), in order to avoid any loss of S in the form of H2S during the acidic 

digestion (Mejia Likosova et al. 2013b).  

3 Results and Discussion 

3.1 Soluble iron and sulfide recovery from dilute synthetic, dilute real and full 

strength real FeS suspensions on graphite granules at different anode potentials 

In order to prove the concept of the proposed iron and sulfide recovery 

electrochemical process, 3-4 consecutive runs for each FeS suspension were 

performed as described above. Figure 2 shows the current profile, anode and cathode 

pH profiles, soluble iron profile in the anodic solution and reduced sulfur (as sulfide + 

polysulfide) profile in the cathodic solution during the 3 consecutive runs of the 

process fed with dilute synthetic suspension at +0.8V vs. SHE anode potential. In all 

runs, the anode pH dropped from an initial value of 6.3±2.8 to a final pH of 2.8±0.3 

as a consequence of the oxidations of soluble ferrous to ferric hydroxide and sulfide 

to sulfate, according to equations 1-4. The cathode pH increased from an initial value 

of 3.1±0.2 to a final pH of 10.1±0.9 as a consequence of the reduction of elemental 

sulfur to sulfide and polysulfide, according to equation 5. A similar peak current 

density of 13.3±6.3 A m-2 was reached in all experiments. Despite the continuous 



current flow during the first 30 minutes of experiment, the soluble Fe and reduced S 

(as sulfide and polysulfide) concentrations did not seem to increase after 15 minutes.  

Fig. 2. Current profile [mA], anode and cathode pH profiles, soluble iron profile in the anodic solution 

[mg Fe L-1] and reduced sulfur (as sulfide + polysulfide) profile in the cathodic solution [mg S L-1] 

during 3 consecutive runs of the proposed electrochemical process controlled at +0.8V vs. SHE anode 

potential for a dilute synthetic FeS suspension (123 ± 16 mg Fe L-1). Short, negative spikes in current 

profiles are caused by minor disturbances due to liquid sampling events. 
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In Figure 3A and B, the overall Fe and S balances of the process are shown, 

respectively. In all the experiments, soluble iron was recovered in the anodic solution 

(Figure 3A). Sulfide never appeared in the anodic solution at the end of each run. 

However, up to 28±8% and 31±6% S was lost as sulfate in the anodic solution at 

+0.8V and +1.3 V vs. SHE, respectively (Figure 3B). The cathode side generated 

reduced sulfur (as sulfide and polysulfide) from previously deposited elemental 

sulfur, with reduced sulfide recovery up to 28±5%, 60±17% and 46±11% when 

feeding dilute synthetic, dilute real and full strength real FeS suspensions, 

respectively. 

Fig. 3. Fe and S mass balance of the proposed electrochemical process for dilute synthetic FeS 

suspension at +0.8 V and +1.3 V vs. SHE; and dilute real and full strength real FeS suspensions at +0.8 

V vs. SHE. A) Fe recoveries measured as soluble Fe in the anodic solution at the end of each run. B) 

Reduced sulfur recovery measured as the sum of sulfide and polysulfide in the cathodic solution at the 

end of each run. 

The graphite granules appear to consistently bind 40-70% of the incoming FeS, 

explaining the low recoveries of Fe and S. This was confirmed by the presence of FeS 

particles in the anode backwash and embedded within the graphite granules, as 

observed after opening the reactor. Although the unrecovered Fe and S seem to be 
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trapped as unreacted FeS in the reactor, further consecutive runs will need to be 

performed in order to fully understand the fate of the Fe and S during long-term cyclic 

operation. The results of the experiments from dilute synthetic, dilute real and full 

strength real FeS suspension feed at +0.8 V and +1.3 V vs. SHE are detailed in Table 

2. Due to the higher FeS concentrations, the average run time increased from 1.6±0.2 

h to 24±6 h when moving from dilute to full strength real FeS suspensions. However, 

Fe recoveries were statistically the same for the two strengths. The average power 

requirement when feeding full strength FeS suspensions was 2.4±0.5 kWh kg Fe-1, 

which is only around half of that required for the dilute synthetic or real sludges 

(4.8±3.2 or 4.4±0.3 kWh kg Fe-1, respectively). This can be attributed to the reduced 

Ohmic resistance in the system with the undiluted sludge, which is a result of the 

higher ionic conductivity of the latter (3.7±0.2 S m-1 versus 2.6±0.1 S m-1) after 

dilution with the NaCl solution. 

Table 2. Summary of results for electrochemical recovery of Fe and S from FeS suspensions on 
graphite granules, graphite plates and reticulated vitreous carbon (RVC). 

Suspension fed to anode with graphite granules as WE 
and CE  

Electrode tested with dilute 
FeS  

Type of FeS 
suspension / 

Electrode 

Dilute 
synthetic  

 

Dilute 
synthetic 

Dilute 
real 

Full 
strength 

real 

Graphite 
Plates  

 

RVC  

 

RVC  

 

n 10 4 4 4 3 1 3 

E anode (V 
vs. SHE) +0.8 +1.3 +0.8 +0.8 +0.8 +0.8 +1.3 

Fe fed to 
anode/        
mg L-1 

123±16 103±46 84±11 3000±200 96±9 102 102±33 

S/Fe molar 
ratio in 

Anode feed 
1.3±0.1 1.3±0.2 1.6±0.2 1.3±0.2 1.0±0.2 1.1 1.1±0.1 

Run time /    
h (I) 1.1±0.2 1.4±0.4 0.9±0.2 24±6 72±2 113 5.1±0.5 

Peak 
Current 
density/        
A m-2(II) 

13.3±6.3 14.9±3.5 10.0±2.6 9.5±4.2 0.4±0.2 0.1  1.0±0.3 

Power 
requirement 
/ kWh kgFe-1 

4.8±3.2 8.2±1.7 4.4±0.3 2.4±0.5 9.1±4.6 2.2  21.5±6.5 



3.2  Soluble iron and sulfide recovery from dilute synthetic suspensions on different 

carbon based electrodes  

Two other carbon based electrodes, namely graphite plates and reticulated vitreous 

carbon (RVC), were tested with dilute synthetic FeS suspensions. Low current 

densities and sulfide recoveries were achieved with both electrodes. The fast 

passivation of the graphite plates as a result of their low surface area led to a recovery 

of only 19±2% soluble iron when controlling the anode potential at +0.8 V vs. SHE.  

A slightly higher current density was achieved with the RVC at +1.3 V vs. SHE. 

However, the sulfide loss to sulfate was significant (only 20±5% S recovery as 

sulfide/polysulfide). Sulfate formation lowered the pH, thus rapidly solubilising all 

FeS, which increased iron recovery up to 53±5%.  Considerably lower current 

densities were reached with the RVC at +0.8 V vs. SHE, suggesting that RVC may 

not be sufficiently reactive for FeS particle oxidation, despite its larger nominal 

surface area. The results of the experiments from dilute synthetic FeS feed at +0.8 V 

vs. SHE with graphite plates and RVC, and +1.3 V vs. SHE with RVC are detailed in 

Table 2. 

Ionic 
conductivity / 

S m-1 
2.9±0.7 2.9±0.7 2.6±0.1 3.7±0.2 2.9±0.7 2.9±0.7 2.9±0.7 

Final anode 
pH 2.8±0.3 2.6±0.5 2.3±0.2 2.1±0.2 4.7±2.0 4.69 3.2±0.4 

Final cathode 
pH 10.1±0.9 10.6±0.1 8.3±3.5 11.9±0.4 8.1±2.5 6.13 10.1±1.0 

Soluble Fe 
recovered in 

anodic 
solution / % 

32±6 41±8 55±15 60±18 19±2 - 53±5 

Reduced S 
(as S2- and 

Polysulfide) 
recovered in 

cathodic 
solution  / % 

28 ± 4 28 ± 5 60 ± 17 46 ± 11 15±3 - 20±5 

I Each run was stopped once the anode reached a stable pH below 3 and/or the current approached zero 
asymptotically. 
II Peak current density calculated as peak current (A) per projected electrode surface area (0.01 m2). 



3.3 FeS precipitation and electrochemical iron and sulfide recovery integrated 

process 

In order to demonstrate the feasibility of an integrated FeS precipitation and 

electrochemical iron and sulfide recovery process with real sludge, 2 consecutive runs 

of the integrated process were performed. For this purpose, real FeS precipitate was 

fed to the anode of the 2-compartment electrochemical cell and the resulting cathode 

effluent was used to precipitate FeS from real ferric sludge. Black FeS particles were 

immediately formed when adding the cathode effluent to the real ferric sludge, 

confirming the feasibility of precipitating FeS particles using the cathode effluent. 

Comparable peak current densities (~10±2 A m-2 compared to 9.5±4.2 A m-2 when 

feeding full strength real FeS sludge precipitated with synthetic sulfide solution) were 

reached in the electrochemical process when feeding the real FeS suspension obtained 

from the reaction of the cathode effluent with the real ferric sludge. In Figure 4, a 

schematic representation of the integrated process and the total Fe, sulfide and the 

organic solids (measured as volatile suspended solids, VSS) mass balances are 

presented.  

Fig. 4. Proposed integrated FeS precipitation and electrochemical iron and sulfide recovery process. 

The VSS, total Fe and S mass balances were performed after performing 2 consecutive runs of the 

integrated process, using the sulfide rich cathode effluent to precipitate FeS from real ferric sludge and 

feeding it to the anode of the 2-compartment electrochemical cell. 
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In the FeS precipitation process, around 83% organic solids co-precipitated with the 

FeS particles. Thus, VSS removal in the FeS precipitation process would be hardly 

feasible. After feeding the FeS-VSS suspension to the anode of the electrochemical 

cell, up to 35±12% of the VSS exit with the anodic effluent. The remaining 65% of 

the VSS were retained in the graphite granular bed.  

However, an increase in the VSS in the anode effluent was seen in the consecutive 

runs (i.e. 28%, 29%, 49% of the influent VSS were recovered in the effluent of run 0, 

1 and 2 respectively), indicating that the VSS accumulation rate in the reactor may 

decrease cycle after cycle.  Moreover, the VSS easily precipitate in the anode effluent 

as a result of the acidic conditions, leaving a VSS-free soluble iron supernatant. This 

was confirmed by measuring the VSS content in the supernatant (less than 10 mg 

VSS) after 15 min of settling in a 50 mL Falcon tube. Therefore, the best point for 

VSS removal would be in a clarifier fed with the anode effluent.  

As shown in Figure 4, a make-up sulfide solution to the FeS precipitation process 

would be required in order to reach the stoichiometric S:Fe molar ratio of 1.5, as a 

result of the incomplete sulfide recovery in the cathode effluent (46±11% reduced S). 

Additionally, acid addition to the FeS precipitation process (down to pH 4) was 

required in order to achieve the separation of the FeS particles by gravity settling. 

This study is a proof of concept and a stepping-stone towards the implementation of 

the integrated process at full scale. However, there are still some significant issues 

that will need to be addressed in the further development of the process. For instance, 

the recovered FeCl3 solution contains high NaCl concentrations, which could be 

problematic for reuse as a coagulant in a water treatment process. The objective of 

this study was to prove a process concept, hence NaCl was overdosed well above the 

stoichiometric requirement. In engineering applications, the NaCl addition should be 

lower to be as close as possible to the stoichiometric minimum, which would then 

provide a similar Fe to Cl ratio as in the original ferric chloride solution. Further work 

is required to fully understand the fate of the VSS entering the electrochemical 

recovery process. As explained in this study, most of the VSS appears to be captured 

in the granular graphite bed. This is a serious problem that may lead to fouling of the 

electrode over extended operating periods. However, an increase in the VSS fraction 

exiting in the anode effluent was seen after the first two runs, suggesting that the 



recovery may be increasing further (and hence the accumulation be reduced) with 

consecutive runs. Still, additional experiments and longer operation of the process 

will need to be performed in order to better understand and address the fate of VSS 

during ongoing cyclic operation.  

4 Conclusions 

The aim of this research was to demonstrate the recovery of soluble iron and sulfide 

from FeS sludge via the proposed electrochemical process using carbon-based 

electrodes. Furthermore, to prove the feasibility of an integrated process for ferric 

chloride regeneration from wastewater or drinking water precipitation sludge, 

whereby the integrated process comprises FeS generation and electrochemical iron 

and sulfide recovery. After testing different concentrations of synthetic and real FeS 

suspensions at different anode potentials and carbon electrode materials, it was 

concluded that: 

• Soluble iron and sulfide/polysulfide were partially recovered in the anodic 

solution and cathodic solution, respectively, at the applied anode potential of +0.8 V 

vs. SHE on graphite granules. 

• Higher Fe recoveries were reached when feeding the process with real FeS 

suspension (~ 60% Fe recovery) compared to synthetic FeS suspension (up to 41% Fe 

recovery) on graphite granules.  

• A large electrode surface area is beneficial for the process, however the RVC 

electrode material seems to have a poor electrochemical reactivity for the FeS 

particles, making this electrode unsuitable for the proposed iron and sulfide recovery 

process.  

• The successful operation of the integrated FeS precipitation and 

electrochemical iron and sulfide recovery process was demonstrated. However, the 

addition of a make-up sulfide solution and an acid stream to the FeS precipitation 

process is still required in order to guarantee completion of the FeS formation reaction 

and precipitation of the formed particles. 
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