7 research outputs found

    Progress and process improvements for multiple electron-beam direct write

    No full text
    International audienceMassively parallel electron beam direct write (MP-EBDW) lithography is a cost-effective patterning solution, complementary to optical lithography, for a variety of applications ranging from 200 to 14 nm. This paper will present last process/integration results to achieve targets for both 28 and 45nm nodes. For 28nm node, we mainly focus on line-width roughness (LWR) mitigation by playing with stack, new resist platform and bias design strategy. The lines roughness was reduced by using thicker spin-on-carbon (SOC) hardmask (-14%) or non-chemically amplified (non-CAR) resist with bias writing strategy implementation (-20%). Etch transfer into trilayer has been demonstrated by preserving pattern fidelity and profiles for both CAR and non-CAR resists. For 45nm node, we demonstrate the electron-beam process integration within optical CMOS flows. Resists based on KrF platform show a full compatibility with multiple stacks to fit with conventional optical flow used for critical layers. Electron-beam resist performances have been optimized to fit the specifications in terms of resolution, energy latitude, LWR and stack compatibility. The patterning process overview showing the latest achievements is mature enough to enable starting the multi-beam technology pre-production mode

    Exploring strategies to contact 3D nano-pillars

    No full text
    This contribution explores different strategies to electrically contact vertical pillars with diameters less than 100 nm. Two process strategies have been defined, the first based on Atomic Force Microscope (AFM) indentation and the second based on planarization and reactive ion etching (RIE). We have demonstrated that both proposals provide suitable contacts. The results help to conclude that the most feasible strategy to be implementable is the one using planarization and reactive ion etching since it is more suitable for parallel and/or high-volume manufacturing processing.This work received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 688072 (Ions4SET), by the Spanish Ministry of Economy and Competitiveness (MINECO) under Contract Nos, TEC2015-69864-R and RTI2018-102007-B-I00 and by the Generalitat de Catalunya (2017 SGR 1187). This work made use of the Spanish ICTS Network MICRONANOFABS, partially supported by MEINCOM.Peer reviewe

    Sub-20 nm multilayer nanopillar patterning for hybrid SET/CMOS integration

    No full text
    International audienceSETs (Single-Electron-Transistors) arouse growing interest for their very low energy consumption. For future industrialization, it is crucial to show a CMOS-compatible fabrication of SETs, and a key prerequisite is the patterning of sub-20 nm Si Nano-Pillars (NP) with an embedded thin SiO2 layer. In this work, we report the patterning of such multi-layer isolated NP with e-beam lithography combined with a Reactive Ion Etching (RIE) process. The Critical Dimension (CD) uniformity and the robustness of the Process of Reference are evaluated. Characterization methods, either by CD-SEM for the CD, or by TEM cross-section for the NP profile, are compared and discussed

    CMOS-compatible manufacturability of sub-15 nm Si/SiO2_2/Si nanopillars containing single Si nanodots for single electron transistor applications

    No full text
    International audienceThis study addresses the complementary metal-oxide-semiconductor-compatible fabrication of vertically stacked Si/SiO2_2/Si nanopillars (NPs) with embedded Si nanodots (NDs) as key functional elements of a quantum-dot-based, gate-all-around single-electron transistor (SET) operating at room temperature. The main geometrical parameters of the NPs and NDs were deduced from SET device simulations using the nextnano++ program package. The basic concept for single silicon ND formation within a confined oxide volume was deduced from Monte-Carlo simulations of ion-beam mixing and SiOx_x phase separation. A process flow was developed and experimentally implemented by combining bottom-up (Si ND self-assembly) and top-down (ion-beam mixing, electron-beam lithography, reactive ion etching) technologies, fully satisfying process requirements of future 3D device architectures. The theoretically predicted self-assembly of a single Si ND via phase separation within a confined SiOx_x disc of <500 nm3^3 volume was experimentally validated. This work describes in detail the optimization of conditions required for NP/ND formation, such as the oxide thickness, energy and fluence of ion-beam mixing, thermal budget for phase separation and parameters of reactive ion beam etching. Low-temperature plasma oxidation was used to further reduce NP diameter and for gate oxide fabrication whilst preserving the pre-existing NDs. The influence of critical dimension variability on the SET functionality and options to reduce such deviations are discussed. We finally demonstrate the reliable formation of Si quantum dots with diameters of less than 3 nm in the oxide layer of a stacked Si/SiO2_2/Si NP of 10 nm diameter, with tunnelling distances of about 1 nm between the Si ND and the neighboured Si regions forming drain and source of the SET
    corecore