11 research outputs found
Numerical Predictions of Three-Dimensional Velocity Field and Bed Shear Stress around Bridge Piers
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Sound wall barriers: Near roadway dispersion under neutrally stratified boundary layer
With the passage of California Senate Bill 375, which motivates infill development near transit hubs, there is the potential to increase vehicle congestion in residential communities and increase in human exposure to toxic mobile source pollutants. Among all the mitigation strategies that protect near roadway residents from health-affecting vehicular emissions (e.g. separating sensitive receptors from high traffic roadways), this paper discusses the impact of sound wall barriers (SBs) in reducing the air pollution exposure of nearby residents. To date, there have been some studies done to understand the impact of these structures on dispersion of vehicular emissions; however, no definitive conclusion has been drawn yet. The main objective of this paper is to provide more information and details on flow and dispersion affected by barriers through a systematic laboratory simulation of plume dispersion using a water channel. Three sets of experiments were conducted: (1) plume visualizations, (2) plume concentration measurements, and (3) flow velocity measurements. Results from this study shows that the deployment of sound barriers induces a recirculating flow over the roadway which transports the surface released emissions to the upwind side of the roadway, and then shifts the plume upward through an induced updraft motion. Plume visualizations clearly demonstrate that the presence of SBs induce significant vertical mixing and updraft motion on the roadway which increases the initial plume dilution and plume height and consequently results in reduced downwind ground level concentrations. Although different SB configurations result in different localized flow patterns, the dispersion pattern does not change significantly after several SB heights downwind of the roadway
Recommended from our members
Effect of hydrogen addition on criteria and greenhouse gas emissions for a marine diesel engine
Hydrogen remains an attractive alternative fuel to petroleum and a number of investigators claim that adding hydrogen to the air intake manifold of a diesel engine will reduce criteria emissions and diesel fuel consumption. Such claims are appealing when trying to simultaneously reduce petroleum consumption, greenhouse gases and criteria pollutants. The goal of this research was to measure the change in criteria emissions (CO, NOx, and PM 2.5) and greenhouse gases such as carbon dioxide (CO2), using standard test methods for a wide range of hydrogen addition rates. A two-stroke Detroit Diesel Corporation 12V-71TI marine diesel engine was mounted on an engine dynamometer and tested at three out of the four loads specified in the ISO 8178-4 E3 emission test cycle and at idle. The engine operated on CARB ultra-low sulfur #2 diesel with hydrogen added at flow rates of 0, 22 and 220 SLPM. As compared with the base case without hydrogen, measurements showed that hydrogen injection at 22 and 220 SLPM had negligible influence on the overall carbon dioxide specific emission, EFCO2. However, in examining data at each load the data revealed that at idle EFCO2 was reduced by 21% at 22 SLPM (6.9% of the added fuel energy was from hydrogen) and 37.3% at 220 SLPM (103.1% of the added fuel energy was from hydrogen). At all other loads, the influence of added hydrogen was insignificant. Specific emissions for nitrogen oxides, EFNOx, and fine particulate matters, EFPM 2.5, showed a trade-off relationship at idle. At idle, EFNO x was reduced by 28% and 41% with increasing hydrogen flow rates, whilst EFPM2.5 increased by 41% and 86% respectively. For other engine loads, EFNOx and EFPM2.5 did not change significantly with varying hydrogen flow rates. One of the main reasons for the greater impact of hydrogen at idle is that the contribution of hydrogen to the total fuel energy is much higher at idle as compared to the other loads. The final examination in this paper was the system energy balance when hydrogen is produced by an on-board electrolysis unit. An analysis at 75% engine load showed that hydrogen production increased the overall equivalent fuel consumption by 2.6% at 22 SLPM and 17.7% at 220 SLPM. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved