21 research outputs found

    Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke.

    Get PDF
    Focal stroke is a disabling disease with lifelong sensory, motor and cognitive impairments. Given the paucity of effective clinical treatments, basic scientists are developing novel options for protection of the affected brain and regeneration of lost tissue. Tissue bioengineering and stem/progenitor cell treatments have both been individually pursued for stroke neural repair therapies, with some benefit in tissue recovery. Emerging directions in stroke neural repair approaches combine these two therapies to use biopolymers with stem/progenitor transplants to promote greater cell survival in the transplant and directed delivery of bioactive molecules to the transplanted cells and the adjacent injured tissue. In this review the background literature on a combined use of neural stem/progenitor cells encapsulated in hyaluronan gels is discussed and the way this therapeutic approach can affect the important processes involved in brain tissue reconstruction, such as angiogenesis, axon regeneration, neural differentiation and inflammation is clarified. The glycosaminoglycan hyaluronan can optimize those processes and be employed in a successful neural tissue engineering approach

    Initial absence of N20 waveforms from median nerve somatosensory evoked potentials in a patient with cardiac arrest and good outcomes

    Get PDF
    A 34-year-old male was brought to the hospital with a chest gunshot wound. Pulseless upon arrival, blood pressure was absent for 10 minutes. A thoracotomy resulted in return of spontaneous circulation. On hospital day 5, with brainstem reflexes present, he was unresponsive to call or pain, exhibited generalized hyperreflexia and bilateral Babinskys. Median nerve somatosensory evoked potentials (mSSEPs) and brainstem auditory evoked potentials were obtained. International Federation of Clinical Neurophysiology recommendations for mSSEPs and brainstem auditory evoked potentials were followed. Despite absence of the N20 responses from cortical mSSEPs no withdrawal from care was agreed upon. After awaking on day 7, mSSEPs were repeated and present. The patient survived and was discharged with minor deficits. Bilateral absence of N20 responses from mSSEPs performed beyond 48 hours after resuscitation from cardiac arrest is highly associated with bad neurological outcomes. However, variation due to hypothermia, noisy signals, medications, and brain hypo-perfusion must be taken into account

    The fate of neurons after traumatic spinal cord injury in rats: a systematic review

    Get PDF
    Objective(s): To reach an evidence-based knowledge in the context of the temporal-spatial pattern of neuronal death and find appropriate time of intervention in order to preserve spared neurons and promote regeneration after traumatic spinal cord injury (TSCI). Materials and Methods: The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided systematic review. PubMed and EMBASE were searched (24 October, 2015) with no temporal or linguistic restrictions. Hand-search was performed in the bibliographies of relevant articles. Non-interventional animal studies evaluating time-dependent neuronal death following acute mechanical trauma to the spinal cord were included. We separately evaluated the fate of various populations of neurons including propriospinal neurons, ventral motor neurons, Clarke’s column neurons, and supraspinal neurons. Results: We found 11,557 non-duplicated studies. Screening through the titles and abstracts led to 549 articles, 49 of which met the inclusion criteria. Both necrotic and apoptotic neuronal deaths occur after TSCI, though necrosis is the prominent mechanism. There are differences in the responses of intrinsic neurons of the spinal cord to the TSCI. Also, the extent of neuronal death in the supraspinal neurons depends on the anatomical location of their axons. Conclusion: In order to develop new therapies, selection of the injury model and time of intervention has a crucial role in the efficacy of therapy. In addition, examining the safety and efficacy of an intervention by reliable methods not confounded by the injury-related changes would promote translation of therapies to the clinical application

    Factor Structure and Psychometric Properties of the Farsi Versions of Empathy and Systemizing Quotient: Short Forms

    Get PDF
    Objective: We aimed to examine the validity and reliability of the empathy quotient (EQ) and systemizing quotient (SQ) in a Farsi-speaking population.  Method: This study explores the factor structure and psychometric properties of the Farsi translations of the 22-item version of EQ and the 25-item version of SQ among 542 young university students. Results: Applying a cross-validation approach, a 14-item two-factor model and a 15-item four-factor model for the Farsi translations of the short versions of EQ and SQ, respectively, were extracted from the exploratory dataset using exploratory factor analysis (EFA). Confirmatory factor analysis (CFA) on the validation dataset confirmed the factor structures identified by EFA. In addition, acceptable internal consistency and test-retest reliability were demonstrated for the Farsi translations of the 14-item two-factor EQ model and the 15-item four-factor SQ model. Conclusion: The results suggested further evidence in favor of the multi-factorial constructs of the EQ and SQ and validity and reliability of the scales

    Interaction of glia with a compliant, microstructured silicone surface

    No full text
    Soft bioengineered surfaces offer a route towards modulating the tissue responses to chronically implanted devices and may enhance their functionality. In this communication we fabricate microtopographically rich and mechanically compliant silicone surfaces for use in soft neural interfaces. We observe the interaction of primary rat microglia and astroglia with arrays of tall and short (4.7 and 0.5 mu m) vertically oriented polydimethylsiloxane (PDMS) micropillars and a flat PDMS surface in vitro. With the pillar size and spacing that we use (1.3 mu m diameter and 1.6 mu m edge to edge), glia are found to engulf and bend tall pillars. The cytoskeleton of cells adhering to the pillar arrays lacks actin stress fibers; instead we observe actin ring formations around individual pillars. Tall, but not short pillar arrays are inhibitory to migration and spreading for both microglia and astrocytes. When compared to a flat PDMS surface and short pillar arrays, tall micropillar arrays cause nearly a 2-fold decrease in proliferation rates for both cell types. The antimitotic properties of tall pillar arrays may be useful for reducing the density of the glial capsule around brain-implanted devices. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Biological Motion Perception Is Affected by Age and Cognitive Style in Children Aged 8–15

    No full text
    The current paper aims to address the question of how biological motion perception in different social contexts is influenced by age or also affected by cognitive styles. We examined developmental changes of biological motion perception among 141 school children aged 8–15 using point-light displays in monadic and dyadic social contexts. Furthermore, the cognitive styles of participants were investigated using empathizing-systemizing questionnaires. Results showed that the age and empathizing ability strongly predicted improvement in action perception in both contexts. However the systemizing ability was an independent predictor of performance only in monadic contexts. Furthermore, accuracy of action perception increased significantly from 46.4% (SD = 16.1) in monadic to 62.5% (SD = 11.5) in dyadic social contexts. This study can help to identify the roles of social context in biological motion perception and shows that children with different cognitive styles may present different biological motion perception
    corecore