19 research outputs found

    Losartan Decreases p42/44 MAPK Signaling and Preserves LZ+ MYPT1 Expression

    Get PDF
    Heart failure is associated with impairment in nitric oxide (NO) mediated vasodilatation, which has been demonstrated to result from a reduction in the relative expression of the leucine zipper positive (LZ+) isoform of the myosin targeting subunit (MYPT1) of myosin light chain phosphatase. Further, captopril preserves normal LZ+ MYPT1 expression, the sensitivity to cGMP-mediated vasodilatation and modulates the expression of genes in the p42/44 MAPK and p38 MAPK signaling cascades. This study tests whether angiotensin receptor blockade (ARB) with losartan decreases p42/44 MAPK or p38 MAPK signaling and preserves LZ+ MYPT1 expression in a rat infarct model of heart failure. In aortic smooth muscle, p42/44 MAPK activation increases and LZ+ MYPT1 expression falls after LAD ligation. Losartan treatment decreases the activation of p42/44 MAPK to the uninfarcted control level and preserves normal LZ+ MYPT1 expression. The expression and activation of p38 MAPK, however, is low and does not change following LAD ligation or with losartan therapy. These data suggest that either reducing or blocking the effects of circulating angiotensin II, both decreases the activation of the p42/44 MAPK signaling cascade and preserves LZ+ MYPT1 expression. Thus, the ability of ACE-inhibitors and ARBs to modulate the vascular phenotype, to preserve normal flow mediated vasodilatation may explain the beneficial effects of these drugs compared to other forms of afterload reduction in the treatment of heart failure

    Impact of Center Experience on Patient Radiation Exposure During Transradial Coronary Angiography and Percutaneous Intervention: A Patient-Level, International, Collaborative, Multi-Center Analysis.

    Get PDF
    BACKGROUND: The adoption of the transradial (TR) approach over the traditional transfemoral (TF) approach has been hampered by concerns of increased radiation exposure-a subject of considerable debate within the field. We performed a patient-level, multi-center analysis to definitively address the impact of TR access on radiation exposure. METHODS AND RESULTS: Overall, 10 centers were included from 6 countries-Canada (2 centers), United Kingdom (2), Germany (2), Sweden (2), Hungary (1), and The Netherlands (1). We compared the radiation exposure of TR versus TF access using measured dose-area product (DAP). To account for local variations in equipment and exposure, standardized TR:TF DAP ratios were constructed per center with procedures separated by coronary angiography (CA) and percutaneous coronary intervention (PCI). Among 57 326 procedures, we demonstrated increased radiation exposure with the TR versus TF approach, particularly in the CA cohort across all centers (weighted-average ratios: CA, 1.15; PCI, 1.05). However, this was mitigated by increasing TR experience in the PCI cohort across all centers (r=-0.8; P=0.005). Over time, as a center transitioned to increasing TR experience (r=0.9; P=0.001), a concomitant decrease in radiation exposure occurred (r=-0.8; P=0.006). Ultimately, when a center's balance of TR to TF procedures approaches 50%, the resultant radiation exposure was equivalent. CONCLUSIONS: The TR approach is associated with a modest increase in patient radiation exposure. However, this increase is eliminated when the TR and TF approaches are used with equal frequency-a guiding principle for centers adopting the TR approach

    Pre-Procedural Atorvastatin Mobilizes Endothelial Progenitor Cells: Clues to the Salutary Effects of Statins on Healing of Stented Human Arteries

    Get PDF
    OBJECTIVES: Recent clinical trials suggest an LDL-independent superiority of intensive statin therapy in reducing target vessel revascularization and peri-procedural myocardial infarctions in patients who undergo percutaneous coronary interventions (PCI). While animal studies demonstrate that statins mobilize endothelial progenitor cells (EPCs) which can enhance arterial repair and attenuate neointimal formation, the precise explanation for the clinical PCI benefits of high dose statin therapy remain elusive. Thus we serially assessed patients undergoing PCI to test the hypothesis that high dose Atorvastatin therapy initiated prior to PCI mobilizes EPCs that may be capable of enhancing arterial repair. METHODS AND RESULTS: Statin naïve male patients undergoing angiography for stent placement were randomized to standard therapy without Atorvastatin (n = 10) or treatment with Atorvastatin 80 mg (n = 10) beginning three days prior to stent implantation. EPCs were defined by flow cytometry (e.g., surface marker profile of CD45dim/34+/133+/117+). As well, we also enumerated cultured angiogenic cells (CACs) by standard in vitro culture assay. While EPC levels did not fluctuate over time for the patients free of Atorvastatin, there was a 3.5-fold increase in EPC levels with high dose Atorvastatin beginning within 3 days of the first dose (and immediately pre-PCI) which persisted at 4 and 24 hours post-PCI (p<0.05). There was a similar rise in CAC levels as assessed by in vitro culture. CACs cultured in the presence of Atorvastatin failed to show augmented survival or VEGF secretion but displayed a 2-fold increase in adhesion to stent struts (p<0.05). CONCLUSIONS: High dose Atorvastatin therapy pre-PCI improves EPC number and CAC number and function in humans which may in part explain the benefit in clinical outcomes seen in patients undergoing coronary interventions

    New developments in the clinical use of drug-coated balloon catheters in peripheral arterial disease

    No full text
    Jesse Naghi, Ethan A Yalvac, Ali Pourdjabbar, Lawrence Ang, John Bahadorani, Ryan R Reeves, Ehtisham Mahmud, Mitul Patel Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California, San Diego, CA, USA Abstract: Peripheral arterial disease (PAD) involving the lower extremity is a major source of morbidity and mortality. Clinical manifestations of PAD span the spectrum from lifestyle limiting claudication to ulceration and gangrene leading to amputation. Advancements including balloon angioplasty, self-expanding stents, drug-eluting stents, and atherectomy have resulted in high technical success rates for endovascular therapy in patients with PAD. However, these advances have been limited by somewhat high rates of clinical restenosis and clinically driven target lesion revascularization. The recent introduction of drug-coated balloon technology shows promise in limiting neointimal hyperplasia induced by vascular injury after endovascular therapies. This review summarizes the contemporary clinical data in the emerging area of drug-coated balloons. Keywords: drug-coated balloons, endovascular, percutaneous transluminal angioplasty, paclitaxel, peripheral arterial diseas
    corecore