128 research outputs found

    The PhotoDissociation Region Toolbox: Software and Models for Astrophysical Analysis

    Full text link
    The PhotoDissociation Region Toolbox provides comprehensive, easy-to-use, public software tools and models that enable an understanding of the interaction of the light of young, luminous, massive stars with the gas and dust in the Milky Way and in other galaxies. It consists of an open-source Python toolkit and photodissociation region models for analysis of infrared and millimeter/submillimeter line and continuum observations obtained by ground-based and sub-orbital telescopes, and astrophysics space missions. Photodissociation regions (PDRs) include all of the neutral gas in the ISM where far-ultraviolet photons dominate the chemistry and/or heating. In regions of massive star formation, PDRs are created at the boundaries between the H II regions and neutral molecular cloud, as photons with energies 6 eV <hν< < h \nu < 13.6 eV photodissociate molecules and photoionize metals. The gas is heated by photo-electrons from small grains and large molecules and cools mostly through far-infrared fine-structure lines like [O I] and [C II]. The models are created from state-of-the art PDR codes that includes molecular freeze-out; recent collision, chemical, and photo rates; new chemical pathways, such as for oxygen chemistry; and allow for both clumpy and uniform media. The models predict the emergent intensities of many spectral lines and FIR continuum. The tools find the best-fit models to the observations and provide insights into the physical conditions and chemical makeup of the gas and dust. The PDR Toolbox enables novel analysis of data from telescopes such as ISO, Spitzer, Herschel, STO, SOFIA, SWAS, APEX, ALMA, and JWST.Comment: 22 pages, 10 figures, includes code listing

    Dynamics of the Eagle Nebula

    Get PDF

    Spin-2 Green's Functions on Kerr in Radiation Gauge

    Full text link
    We construct retarded and advanced Green's functions for gravitational perturbations in Kerr in an ingoing radiation gauge. Our Green's functions have a frequency domain piece that has previously been obtained by Ori [Phys. Rev. D 67 (2003)] based on the Chrzanowski-Cohen-Kegeles metric reconstruction method. As is well known, this piece by itself is not sufficient to obtain an actual Green's function. We show how to complete it with a piece based on a method by Green et al. [Class. Quant. Grav. 37 (2020)]. The completion piece has a completely explicit form in the time-domain and is supported on pairs of points on the same outgoing principal null geodesic which are in the appropriate causal order. We expect our Green's functions to be useful for gravitational self-force calculations and other perturbation problems on Kerr spacetime.Comment: 43 page

    Formation of Pillars at the Boundaries between H II Regions and Molecular Clouds

    Get PDF
    We investigate numerically the hydrodynamic instability of an ionization front (IF) accelerating into a molecular cloud, with imposed initial perturbations of different amplitudes. When the initial amplitude is small, the imposed perturbation is completely stabilized and does not grow. When the initial perturbation amplitude is large enough, roughly the ratio of the initial amplitude to wavelength is greater than 0.02, portions of the IF temporarily separate from the molecular cloud surface, locally decreasing the ablation pressure. This causes the appearance of a large, warm HI region and triggers nonlinear dynamics of the IF. The local difference of the ablation pressure and acceleration enhances the appearance and growth of a multimode perturbation. The stabilization usually seen at the IF in the linear regimes does not work due to the mismatch of the modes of the perturbations at the cloud surface and in density in HII region above the cloud surface. Molecular pillars are observed in the late stages of the large amplitude perturbation case. The velocity gradient in the pillars is in reasonably good agreement with that observed in the Eagle Nebula. The initial perturbation is imposed in three different ways: in density, in incident photon number flux, and in the surface shape. All cases show both stabilization for a small initial perturbation and large growth of the second harmonic by increasing amplitude of the initial perturbation above a critical value.Comment: 21 pages, 8 figures, accepted for publication in ApJ. high resolution figures available upon reques

    Dense, Parsec-Scale Clumps Near the Great Annihilator

    Get PDF
    We report on Combined Array for Research in Millimeter-Wave Astronomy and James Clerk Maxwell Telescope observations toward the Einstein source 1E 1740.7–2942, a low-mass X-ray binary commonly known as the "Great Annihilator." The Great Annihilator is known to be near a small, bright molecular cloud in a region largely devoid of emission in ^(12)CO surveys of the Galactic center. This region is of interest because it is interior to the dust lanes which may be the shock zones where atomic gas from the HI nuclear disk is converted into molecular gas. We find that the region is populated with a large number of dense (n ~ 10^5 cm^(–3)) regions of excited gas with small filling factors. The gas appears to have turbulent support and may be the result of sprays of material from collisions in the shock zone. We estimate that ~(1-3) × 10^5 M⊙ of shocked gas resides in our r ~ 3', Δv_(LSR) = 100 km s^(–1) field. If this gas has recently shocked and is interior to the inner Lindblad resonance of the dominant bar, it is in transit to the x_2 disk, suggesting that a significant amount of mass may be transported to the disk by a low filling factor population of molecular clouds with low surface brightness in larger surveys

    Dense, Parsec-Scale Clumps near the Great Annihilator

    Full text link
    We report on Combined Array for Research in Millimeter-Wave Astronomy (CARMA) and James Clerk Maxwell Telescope (JCMT) observations toward the Einstein source 1E 1740.7-2942, a LMXB commonly known as the "Great Annihilator." The Great Annihilator is known to be near a small, bright molecular cloud on the sky in a region largely devoid of emission in 12-CO surveys of the Galactic Center. The region is of interest because it is interior to the dust lanes which may be the shock zones where atomic gas from HI nuclear disk is converted into molecular gas. We find that the region is populated with a number of dense (n ~ 10^5 cm^-3) regions of excited gas with small filling factors, and estimate that up to 1-3 x 10^5 solar masses of gas can be seen in our maps. The detection suggests that a significant amount of mass is transported from the shock zones to the GC star-forming regions in the form of small, dense bundles.Comment: 26 pages, 7 figures, accepted for publication by the Astrophysical Journal, abstract abridge

    A Resolved Ring of Debris Dust around the Solar Analog HD 107146

    Get PDF
    We present resolved images of the dust continuum emission from the debris disk around the young (80-200 Myr) solar-type star HD 107146 with CARMA at λ = 1.3 mm and the CSO at λ = 350 μ. Both images show that the dust emission extends over an approximately 10" diameter region. The high-resolution (3") CARMA image further reveals that the dust is distributed in a partial ring with significant decrease in a flux inward of 97 AU. Two prominent emission peaks appear within the ring separated by ~140° in the position angle. The morphology of the dust emission is suggestive of dust captured into a mean motion resonance, which would imply the presence of a planet at an orbital radius of ~45-75 AU
    • …
    corecore