298 research outputs found

    On the dependence of the avalanche angle on the granular layer thickness

    Full text link
    A layer of sand of thickness h flows down a rough surface if the inclination is larger than some threshold value theta which decreases with h. A tentative microscopic model for the dependence of theta with h is proposed for rigid frictional grains, based on the following hypothesis: (i) a horizontal layer of sand has some coordination z larger than a critical value z_c where mechanical stability is lost (ii) as the tilt angle is increased, the configurations visited present a growing proportion $_s of sliding contacts. Instability with respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure

    Shear bands in granular flow through a mixing length model

    Full text link
    We discuss the advantages and results of using a mixing-length, compressible model to account for shear banding behaviour in granular flow. We formulate a general approach based on two function of the solid fraction to be determined. Studying the vertical chute flow, we show that shear band thickness is always independent from flowrate in the quasistatic limit, for Coulomb wall boundary conditions. The effect of bin width is addressed using the functions developed by Pouliquen and coworkers, predicting a linear dependence of shear band thickness by channel width, while literature reports contrasting data. We also discuss the influence of wall roughness on shear bands. Through a Coulomb wall friction criterion we show that our model correctly predicts the effect of increasing wall roughness on the thickness of shear bands. Then a simple mixing-length approach to steady granular flows can be useful and representative of a number of original features of granular flow.Comment: submitted to EP

    Block to granular-like transition in dense bubble flows

    Full text link
    We have experimentally investigated 2-dimensional dense bubble flows underneath inclined planes. Velocity profiles and velocity fluctuations have been measured. A broad second-order phase transition between two dynamical regimes is observed as a function of the tilt angle θ\theta. For low θ\theta values, a block motion is observed. For high θ\theta values, the velocity profile becomes curved and a shear velocity gradient appears in the flow.Comment: Europhys. Lett. (2003) in pres

    Serving GODAE Data and Products to the Ocean Community

    Get PDF
    The Global Ocean Data Assimilation Experiment (GODAE [http:// www.godae.org]) has spanned a decade of rapid technological development. The ever-increasing volume and diversity of oceanographic data produced by in situ instruments, remote-sensing platforms, and computer simulations have driven the development of a number of innovative technologies that are essential for connecting scientists with the data that they need. This paper gives an overview of the technologies that have been developed and applied in the course of GODAE, which now provide users of oceanographic data with the capability to discover, evaluate, visualize, download, and analyze data from all over the world. The key to this capability is the ability to reduce the inherent complexity of oceanographic data by providing a consistent, harmonized view of the various data products. The challenges of data serving have been addressed over the last 10 years through the cooperative skills and energies of many individuals

    Pre-avalanche instabilities in a granular pile

    Full text link
    We investigate numerically the transition between static equilibrium and dynamic surface flow of a 2D cohesionless granular system driven by a continuous gravity loading. This transition is characterized by intermittent local dynamic rearrangements and can be described by an order parameter defined as the density of critical contacts, e.g. contacts where the friction is fully mobilized. Analysis of the spatial correlations of critical contacts shows the occurence of ``fluidized'' clusters which exhibit a power-law divergence in size at the approach of the stability limit. The results are compatible with recent models that describe the granular system during the static/dynamic transition as a multi-phase system.Comment: 9 pages, 6 figures, submitted to Phys. Rev. Let

    Clustering, Order, and Collapse in a Driven Granular Monolayer

    Full text link
    Steady state dynamics of clustering, long range order, and inelastic collapse are experimentally observed in vertically shaken granular monolayers. At large vibration amplitudes, particle correlations show only short range order like equilibrium 2D hard sphere gases. Lowering the amplitude "cools" the system, resulting in a dramatic increase in correlations leading either to clustering or an ordered state. Further cooling forms a collapse: a condensate of motionless balls co-existing with a less dense gas. Measured velocity distributions are non-Gaussian, showing nearly exponential tails.Comment: 9 pages of text in Revtex, 5 figures; references added, minor modifications Paper accepted to Phys Rev Letters. Tentatively scheduled for Nov. 9, 199

    A microscopic 2D lattice model of dimer granular compaction with friction

    Full text link
    We study by Monte Carlo simulation the compaction dynamics of hard dimers in 2D under the action of gravity, subjected to vertical and horizontal shaking, considering also the case in which a friction force acts for horizontal displacements of the dimers. These forces are modeled by introducing effective probabilities for all kinds of moves of the particles. We analyze the dynamics for different values of the time τ\tau during which the shaking is applied to the system and for different intensities of the forces. It turns out that the density evolution in time follows a stretched exponential behavior if τ\tau is not very large, while a power law tail develops for larger values of τ\tau. Moreover, in the absence of friction, a critical value τ\tau^* exists which signals the crossover between two different regimes: for τ<τ\tau < \tau^* the asymptotic density scales with a power law of τ\tau, while for τ>τ\tau > \tau^* it reaches logarithmically a maximal saturation value. Such behavior smears out when a finite friction force is present. In this situation the dynamics is slower and lower asymptotic densities are attained. In particular, for significant friction forces, the final density decreases linearly with the friction coefficient. We also compare the frictionless single tap dynamics to the sequential tapping dynamics, observing in the latter case an inverse logarithmic behavior of the density evolution, as found in the experiments.Comment: 10 pages, 15 figures, to be published in Phys. Rev.

    Force distributions in 3D granular assemblies: Effects of packing order and inter-particle friction

    Full text link
    We present a systematic investigation of the distribution of normal forces at the boundaries of static packings of spheres. A new method for the efficient construction of large hexagonal-close-packed crystals is introduced and used to study the effect of spatial ordering on the distribution of forces. Under uniaxial compression we find that the form for the probability distribution of normal forces between particles does not depend strongly on crystallinity or inter-particle friction. In all cases the distribution decays exponentially at large forces and shows a plateau or possibly a small peak near the average force but does not tend to zero at small forces.Comment: 9 pages including 8 figure

    Granular flow down a rough inclined plane: transition between thin and thick piles

    Full text link
    The rheology of granular particles in an inclined plane geometry is studied using molecular dynamics simulations. The flow--no-flow boundary is determined for piles of varying heights over a range of inclination angles θ\theta. Three angles determine the phase diagram: θr\theta_{r}, the angle of repose, is the angle at which a flowing system comes to rest; θm\theta_{m}, the maximum angle of stability, is the inclination required to induce flow in a static system; and θmax\theta_{max} is the maximum angle for which stable, steady state flow is observed. In the stable flow region θr<θ<θmax\theta_{r}<\theta<\theta_{max}, three flow regimes can be distinguished that depend on how close θ\theta is to θr\theta_{r}: i) θ>>θr\theta>>\theta_{r}: Bagnold rheology, characterized by a mean particle velocity vxv_{x} in the direction of flow that scales as vxh3/2v_{x}\propto h^{3/2}, for a pile of height hh, ii) θθr\theta\gtrsim\theta_{r}: the slow flow regime, characterized by a linear velocity profile with depth, and iii) θθr\theta\approx\theta_{r}: avalanche flow characterized by a slow underlying creep motion combined with occasional free surface events and large energy fluctuations. We also probe the physics of the initiation and cessation of flow. The results are compared to several recent experimental studies on chute flows and suggest that differences between measured velocity profiles in these experiments may simply be a consequence of how far the system is from jamming.Comment: 19 pages, 14 figs, submitted to Physics of Fluid

    Signatures of granular microstructure in dense shear flows

    Full text link
    Granular materials react to shear stresses differently than do ordinary fluids. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands: narrow zones containing large relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5]. Since shear bands mark areas of flow, material failure and energy dissipation, they play a crucial role for many industrial, civil engineering and geophysical processes[6]. They also appear in related contexts, such as in lubricating fluids confined to ultra-thin molecular layers[7]. Detailed information on motion within a shear band in a three-dimensional geometry, including the degree of particle rotation and inter-particle slip, is lacking. Similarly, only little is known about how properties of the individual grains - their microstructure - affect movement in densely packed material[5]. Combining magnetic resonance imaging, x-ray tomography, and high-speed video particle tracking, we obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.Comment: 5 pages, incl. 4 figure
    corecore