2,843 research outputs found
An NPZ Model with State-Dependent Delay due to Size-Structure in Juvenile Zooplankton
The study of planktonic ecosystems is important as they make up the bottom
trophic levels of aquatic food webs. We study a closed
Nutrient-Phytoplankton-Zooplankton (NPZ) model that includes size structure in
the juvenile zooplankton. The closed nature of the system allows the
formulation of a conservation law of biomass that governs the system. The model
consists of a system of nonlinear ordinary differential equation coupled to a
partial differential equation. We are able to transform this system into a
system of delay differential equations where the delay is of threshold type and
is state-dependent. The system of delay differential equations can be further
transformed into one with fixed delay. Using the different forms of the model
we perform a qualitative analysis of the solutions, which includes studying
existence and uniqueness, positivity and boundedness, local and global
stability, and conditions for extinction. Key parameters that are explored are
the total biomass in the system and the maturity level at which the juvenile
zooplankton reach maturity. Numerical simulations are also performed to verify
our analytical results
Nematic-Wetted Colloids in the Isotropic Phase: Pairwise Interaction, Biaxiality and Defects
We calculate the interaction between two spherical colloidal particles
embedded in the isotropic phase of a nematogenic liquid. The surface of the
particles induces wetting nematic coronas that mediate an elastic interaction.
In the weak wetting regime, we obtain exact results for the interaction energy
and the texture, showing that defects and biaxiality arise, although they are
not topologically required. We evidence rich behaviors, including the
possibility of reversible colloidal aggregation and dispersion. Complex
anisotropic self-assembled phases might be formed in dense suspensions.Comment: 4 pages, 6 figure
Generation of Multiple Circular Walls on a Thin Film of Nematic Liquid Crystal by Laser Scanning
We found that multiple circular walls (MCW) can be generated on a thin film
of a nematic liquid crystal through a spiral scanning of a focused IR laser.
The ratios between radii of adjacent rings of MCW were almost constant. These
constant ratios can be explained theoretically by minimization of the Frank
elastic free energy of nematic medium. The director field on a MCW exhibits
chiral symmetry-breaking although the elastic free energies of both chiral MCWs
are degenerated, i.e., the director on a MCW can rotate clockwise or
counterclockwise along the radial direction.Comment: 10 pages, 5 figures. Submitted to Chemical Physics Letters 2nd
Editio
Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs
Belief propagation -- a powerful heuristic method to solve inference problems
involving a large number of random variables -- was recently generalized to
quantum theory. Like its classical counterpart, this algorithm is exact on
trees when the appropriate independence conditions are met and is expected to
provide reliable approximations when operated on loopy graphs. In this paper,
we benchmark the performances of loopy quantum belief propagation (QBP) in the
context of finite-tempereture quantum many-body physics. Our results indicate
that QBP provides reliable estimates of the high-temperature correlation
function when the typical loop size in the graph is large. As such, it is
suitable e.g. for the study of quantum spin glasses on Bethe lattices and the
decoding of sparse quantum error correction codes.Comment: 5 pages, 4 figure
Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel
We theoretically investigate the process of coupling cold atoms into the core
of a hollow-core photonic-crystal optical fiber using a blue-detuned
Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam
to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the
darkest regions of the beam thereby minimizing shifts in the internal states
and making the guide highly robust to heating effects. This single optical beam
is used as both a funnel and guide to maximize the number of atoms into the
fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical
trap (MOT) above a vertically-oriented optical fiber. We observe a
gravito-optical trapping effect for atoms with high orbital momentum around the
trap axis, which prevents atoms from coupling to the fiber: these atoms lack
the kinetic energy to escape the potential and are thus trapped in the laser
funnel indefinitely. We find that by reducing the dipolar force to the point at
which the trapping effect just vanishes, it is possible to optimize the
coupling of atoms into the fiber. Our simulations predict that by using a
low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a
20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms
from a MOT 9 mm away from the fiber. When MOT is positioned further away,
coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl
Drag on particles in a nematic suspension by a moving nematic-isotropic interface
We report the first clear demonstration of drag on colloidal particles by a moving nematic-isotropic
interface. The balance of forces explains our observation of periodic, strip-like structures that are produced by the movement of these particles
Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order
Particles dispersed in a liquid crystal above the nematic-isotropic phase
transition are wetted by a surface-induced corona of paranematic order. Such
coronas give rise to pronounced two-particle interactions. In this article, we
report details on the analytical and numerical study of these interactions
published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially
demonstrate how for large particle separations the asymptotic form of a Yukawa
potential arises. We show that the Yukawa potential is a surprisingly good
description for the two-particle interactions down to distances of the order of
the nematic coherence length. Based on this fact, we extend earlier studies on
a temperature induced flocculation transition in electrostatically stabilized
colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa
potential to establish a flocculation diagram for a much larger range of the
electrostatic parameters, namely the surface charge density and the Debye
screening length. As a new feature, a kinetically stabilized dispersion close
to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for
publication in Phys. Rev.
A comparison of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of quantum chemistry
The ability to perform classically intractable electronic structure
calculations is often cited as one of the principal applications of quantum
computing. A great deal of theoretical algorithmic development has been
performed in support of this goal. Most techniques require a scheme for mapping
electronic states and operations to states of and operations upon qubits. The
two most commonly used techniques for this are the Jordan-Wigner transformation
and the Bravyi-Kitaev transformation. However, comparisons of these schemes
have previously been limited to individual small molecules. In this paper we
discuss resource implications for the use of the Bravyi-Kitaev mapping scheme,
specifically with regard to the number of quantum gates required for
simulation. We consider both small systems which may be simulatable on
near-future quantum devices, and systems sufficiently large for classical
simulation to be intractable. We use 86 molecular systems to demonstrate that
the use of the Bravyi-Kitaev transformation is typically at least approximately
as efficient as the canonical Jordan-Wigner transformation, and results in
substantially reduced gate count estimates when performing limited circuit
optimisations.Comment: 46 pages, 11 figure
Simulating Particle Dispersions in Nematic Liquid-Crystal Solvents
A new method is presented for mesoscopic simulations of particle dispersions
in nematic liquid crystal solvents. It allows efficient first-principle
simulations of the dispersions involving many particles with many-body
interactions mediated by the solvents. A simple demonstration is shown for the
aggregation process of a two dimentional dispersion.Comment: 5 pages, 5 figure
Liquid Crystals in Electric Field
We present a general theory of electric field effects in liquid crystals
where the dielectric tensor depends on the orientation order. As applications,
we examine (i) the director fluctuations in nematic states in electric field
for arbitrary strength of the dielectric anisotropy and (ii) deformation of the
nematic order around a charged particle. Some predictions are made for these
effects.Comment: 9pages, 2figure
- …