65 research outputs found

    Effect of the substitution of nickel to magnesium

    No full text
    Le nickelate de lithium LiNiO2 est l'un des candidats les plus adaptés pour être utilisé comme matériau d'électrode positive dans les batteries lithium-ion. Une étude détaillée du système LixNiO2 a permis de déterminer les mécanismes structuraux et texturaux qui sont mis en jeu pour les forts taux de désintercalation électrochimique (x ≥ 0.30) et qui sont probablement fortement corrélés au vieillissement électrochimique du matériau. L'influence de la substitution partielle du magnésium au nickel sur les propriétés structurales et électrochimiques des phases LiNi1-yMgyO2 (0 ≥ y ≥ 0.20) a également été étudiée. Une analyse précise par diffraction des rayons X a montré que les ions magnésium présents dans le feuillet du matériau initial migrent dans l'espace interfeuillet au cours du cyclage. Cette évolution structurale a été corrélée au très bon comportement électrochimique de ces matériaux substitués.LiNiO2 is considered as a promising positive electrode material for lithium-ion batteries. A detailled study was performed on the LixNiO2 system to elucidate structural and textural evolutions which occur for high-deintercalation rate (x ≥ 0.30) . They were correlated to the capacity fading observed for Li//LiNiO2 cells during long-range-cycling experiments. Novel magnesium-substituted phases LiNi1-yMgyO2 (0 ≥ y ≥ 0.20) where synthesized and characterized from structural and electrochemical points of view in order to determine the effect of partial magnesium substitution for nickel on general properties of lithium nickelate. Detailled x-ray diffraction analysis gave evidence for the migration of all the Mg2+ ions from the slab to the interslab space during the electrochemical process. This cationic displacement was related to the improvement of the cycling properties observed for the magnesium-substituted positive electrode materials

    Contribution à l'étude des phases LixNiO2 utilisées comme matériaux d'électrode positive pour batteries lithium-ion: Effet de la substitution du magnésium au nickel

    Get PDF
    LiNiO2 is considered as a promising positive electrode material for lithium-ion batteries. A detailled study was performed on the LixNiO2 system to elucidate structural and textural evolutions which occur for high-deintercalation rate (x ≥ 0.30) . They were correlated to the capacity fading observed for Li//LiNiO2 cells during long-range-cycling experiments. Novel magnesium-substituted phases LiNi1-yMgyO2 (0 ≥ y ≥ 0.20) where synthesized and characterized from structural and electrochemical points of view in order to determine the effect of partial magnesium substitution for nickel on general properties of lithium nickelate. Detailled x-ray diffraction analysis gave evidence for the migration of all the Mg2+ ions from the slab to the interslab space during the electrochemical process. This cationic displacement was related to the improvement of the cycling properties observed for the magnesium-substituted positive electrode materials.Le nickelate de lithium LiNiO2 est l'un des candidats les plus adaptés pour être utilisé comme matériau d'électrode positive dans les batteries lithium-ion. Une étude détaillée du système LixNiO2 a permis de déterminer les mécanismes structuraux et texturaux qui sont mis en jeu pour les forts taux de désintercalation électrochimique (x ≥ 0.30) et qui sont probablement fortement corrélés au vieillissement électrochimique du matériau. L'influence de la substitution partielle du magnésium au nickel sur les propriétés structurales et électrochimiques des phases LiNi1-yMgyO2 (0 ≥ y ≥ 0.20) a également été étudiée. Une analyse précise par diffraction des rayons X a montré que les ions magnésium présents dans le feuillet du matériau initial migrent dans l'espace interfeuillet au cours du cyclage. Cette évolution structurale a été corrélée au très bon comportement électrochimique de ces matériaux substitués

    Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2

    No full text
    LiNi0.70Co0.15Al0.15O2 has been synthesized by a coprecipitation method. The structural characterization by X-ray and neutron diffraction, associated with a Rietveld analysis, has confirmed a segregation tendency for cobalt and aluminum ions. However, a quasi-ideal lamellar structure was obtained for this phase, with less than 1% extra-nickel ions in the interslab space. Cycling tests have shown a very good cycling stability with a high reversible capacity of about 150 mAh/g in the 3–4.15 V range at the C/20 rate

    Conditioning of Li(Ni,Co)O2 Cathode Materials for Rechargeable Batteries During the First Charge-Discharge Cycles

    No full text
    As-prepared Li(Ni,Co)O2 with good electrochemical performance is an insulator with low degree of cation disorder, i.e. Li and (Ni,Co) are distributed on different and alternating layers. Lithium extraction in the first cycle induces an irreversible first-order phase transition into a metallic phase with a discontinuous change in the c/a ratio by 3.6% and an accompanied partial occupation of some of the vacant Li-sites by Ni-ions. The specific arrangement of those Ni-ions on Li-layers is proposed as a key feature for the good cycling behaviour of Li(Ni,Co)O2 based cathodes in rechargeable batteries

    Electronic density distortion due to intercalation by Li.

    No full text
    High resolution measurements of Compton profiles of LixNiO2 have been carried out using 60 keV photons at ESRF (Grenoble, France). Theoretical profiles are obtained using the plane wave expansion of wave functions calculated using ab-initio SCF method. Theory and experiment are in good agreement. We have further decomposed the charge density modification into a rigid charge transfer from lithium to eg* states of NiO2 and the distorsion of NiO2 charge density mainly due to Ni–O bond changes resulting from lattice parameter change and Jahn-Teller effect
    • …
    corecore