3 research outputs found

    Multi Path FTIR Agriculture Air Pollution Measurement System

    Get PDF
    This paper details the design and validation of a Multiple Path OP-FTIR system with elevation and radial scanning ability and demonstrates its capabilities to quantify and monitor gaseous ammonia emitted from agricultural facilities. The OP-FTIR system has a 500 m range (1000 m full path length) and allows 360° radial scan and 45° scan in elevation. To study large scale sources, two or more similar systems may be needed. For comparison purposes, we ran two similar but not identical OP-FTIR systems side-by-side in a controlled lab environment and in a series of field environments. We determined that in a controlled environment, the two systems can attain an NH3 agreement of 1- 3% at concentrations above 500 ppb. Due to the short path length (~10 m) in the lab, 500 ppb was the detection limit of the two systems. Path lengths in a field are much longer, allowing a lower detection limit. Average agreement in the field was 1-6%. This difference in agreement from the laboratory is likely due to the non-homogeneous distribution of the pollutant

    [Analysis of Multiplatform CO (Carbon Monoxide) Measurements During Trace-P Mission]

    No full text
    Carbon monoxide is considered mission critical (TRACE-P NRA) because it is one of the gases involved in controlling the oxidizing power of the atmosphere and, as a tracer gas, is valuable in interpreting mission data sets. Carbon monoxide exhibits interannual differences, suggesting relatively short-term imbalances in sources and sinks. Sources of CO are dominated by fossil fuel combustion, biomass burning, and the photochemical oxidation of CH4 and nonmethane hydrocarbons while reaction with OH is believed to be the major sink for atmospheric CO, with additional losses due to soil uptake. Uncertainties in the magnitude and distribution of both sources and sinks remain fairly large however, and additional data are required to refine the global budget. Seasonal changes and a northern hemispheric latitudinal gradient have been described for a variety of Pacific basin sites through long-term monitoring of surface background levels. Latitudinal variations have also recently been described at upper tropospheric altitudes over a multi-year period by. TRACE-P will provide an aircraft survey of CO over the northern Pacific in the northern spring when CO concentrations are at their seasonal maximum in the northern hemisphere (NH) and at their seasonal minimum in the southern hemisphere (SH). Previous GTE missions, Le., PEM West-B and PEM Tropics-B, ground-based, and satellite observations (MAPS, April 1994) give us a general picture of the distribution of CO over the northern Pacific during this season. Based on these measurements, background CO levels over remote ocean areas are anticipated to be in the range of 110 - 180 ppbv, while those closer to the Asian continent may rise as high as 600 ppbv. These measurements also reveal high spatial variability (both horizontal and vertical) as well as temporal variations in CO over the area planned for the TRACE-P mission. This variability is a result of multiple CO sources, the meteorological complexity of transport processes, and the photochemical aging of air masses. The influence of biomass burning in the southern Pacific should be relatively small since the mission coincides with the southern tropical wet season when agricultural burning is at its seasonal low. The proposed CO measurements taken during TRACE-P should therefore largely be a function of the impact of various NH sources, primarily Asian and predominantly fossil fuel combustion and biomass burning. These processes are also major sources of many other atmospheric pollutants, consequently making accurate and precise CO measurements is one of the highest TRACE-P priorities [TRACE-P NRA]. The TRACE-P mission emphasizes the dual objectives of assessing the magnitude of the transport of chemically and radiatively important gases such as CO from Asia to the western Pacific, and determining how emissions change and are modified during this transport

    Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane

    Full text link
    Time series of CO and C2H6 measurements have been derived from high-resolution infrared solar spectra recorded in Lauder, New Zealand (45.0 degrees S, 169.7 degrees E, altitude 0.37 km), and at the U.S. National Solar Observatory (31.9 degrees N, 111.6 degrees W, altitude 2.09 km) on Kitt Peak. Lauder observations were obtained between July 1993 and November 1997, while the Kitt Peak measurements were recorded between May 1977 and December 1997. Both databases were analyzed with spectroscopic parameters that included significant improvements for C2H6 relative to previous studies. Target CO and C2H6 lines were selected to achieve similar vertical samplings based on averaging kernels. These calculations show that partial columns from layers extending from the surface to the mean tropopause and from the mean tropopause to 100 km are nearly independent. Retrievals based on a semiempirical application of the Rodgers optimal estimation technique are reported for the lower laver, which has a broad maximum in sensitivity in the upper troposphere. The Lauder CO and C2H6 partial columns exhibit highly asymmetrical seasonal cycles with minima in austral autumn and sharp peaks in austral spring. The spring maxima are the result of tropical biomass burning emissions followed by deep convective vertical transport to the upper troposphere and long-range horizontal transport. Significant year-to-year variations are observed for both CO and C2H6, but the measured trends, (+0.37 +/- 0.57)% yr(-1) and (-0.64 +/- 0.79)% yr(-1), 1 sigma, respectively, indicate no significant long-term changes. The Kitt Peak data also exhibit CO and C2H6 seasonal variations in the lower layer with trends equal to (-0.27 +/- 0.17)% yr(-1) and (-1.20 +/- 0.35')% yr(-1), 1 sigma, respectively. Hence a decrease in the Kitt Peak tropospheric C2H6 column has been detected, though the CO trend is not significant. Both measurement sets are compared with previous observations, reported trends, and three-dimensional model calculations
    corecore