147 research outputs found

    Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    Get PDF
    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined

    Carbon films grown from plasma on III-V semiconductors

    Get PDF
    Dielectric carbon films were grown on n- and p-type GaAs and InP substrates using plasmas generated at 30 KHz from gaseous hydrocarbons. The effect of gas source, flow rate, and power on film growth were investigated. Methane and n-butane gases were utilized. The flow rate and power ranged from 30 to 50 sccm and 25 to 300 W, respectively. AES measurements show only carbon to be present in the films. The relative Ar ion sputtering rate (3 KeV) of carbon depends on the ratio power/pressure. In addition, the degree of asymmetry associated with the carbon-semiconductor interface is approximately power-independent. SIMS spectra indicate different H-C bonding configurations to be present in the films. Band gaps as high as 3.05 eV are obtained from optical absorption studies

    Ellipsometric and optical study of some uncommon insulator films on 3-5 semiconductors

    Get PDF
    Optical properties of three types of insulating films that show promise in potential applications in the 3-4 semiconductor technology were evaluated, namely a-C:H, BN and CaF2. The plasma deposited a-C:H shows an amorphous behavior with optical energy gaps of approximately 2 to 2.4 eV. These a-C:H films have higher density and/or hardness, higher refractive index and lower optical energy gaps with increasing energy of the particles in the plasma, while the density of states remains unchanged. These results are in agreement, and give a fine-tuned positive confirmation to an existing conjecture on the nature of a-C:H films (1). Ion beam deposited BN films show amorphous behavior with energy gap of 5 eV. These films are nonstoichiometric (B/N approximately 2) and have refractive index, density and/or hardness which are dependent on the deposition conditions. The epitaxially grown CaF2 on GaAs films have optical parameters equal to bulk, but evidence of damage was found in the GaAs at the interface

    Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    Get PDF
    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed

    Optical properties of hydrogenated amorphous carbon films grown from methane plasma

    Get PDF
    A 30 kHz ac glow discharge formed from methane gas was used to grow carbon films on InP substrates. Both the growth rate, and the realitive Ar ion sputtering rate at 3 keV varied monotonically with deposition power. Results from the N-15 nuclear reaction profile experiments indicated a slight drop in the hydrogen concentration as more energy was dissipated in the ac discharge. Values for the index of refraction and extinction coefficient ranged from 1.721 to 1.910 and 0 to -0.188, respectively. Optical bandgaps as high as 2.34 eV were determined

    Plasma deposited diamondlike carbon on GaAs and InP

    Get PDF
    The properties of diamond like carbon films grown by RF flow discharge 30 kHz plasma using methane are reported. The Cls XPS line shape of films showed localized hybrid carbon bonds as low as 40 to as high as 95 percent. Infrared spectroscopy and N(15) nuclear reaction profiling data indicated 35 to 42 percent hydrogen, depending inversely on deposition temperature. The deposition rate of films on Si falls off exponentially with substrate temperature, and nucleation does not occur above 200 C on GaAs and InP. Optical data of the films showed bandgap values of 2.0 to 2.4 eV increasing monotonically with CH4 flow rate

    Adhesion, friction, and wear of plasma-deposited thin silicon nitride films at temperatures to 700 C

    Get PDF
    The adhesion, friction, and wear behavior of silicon nitride films deposited by low- and high-frequency plasmas (30 kHz and 13.56 MHz) at various temperatures to 700 C in vacuum were examined. The results of the investigation indicated that the Si/N ratios were much greater for the films deposited at 13.56 MHz than for those deposited at 30 kHz. Amorphous silicon was present in both low- and high-frequency plasma-deposited silicon nitride films. However, more amorphous silicon occurred in the films deposited at 13.56 MHz than in those deposited at 30 kHz. Temperature significantly influenced adhesion, friction, and wear of the silicon nitride films. Wear occurred in the contact area at high temperature. The wear correlated with the increase in adhesion and friction for the low- and high-frequency plasma-deposited films above 600 and 500 C, respectively. The low- and high-frequency plasma-deposited thin silicon nitride films exhibited a capability for lubrication (low adhesion and friction) in vacuum at temperatures to 500 and 400 C, respectively

    Optical dispersion relations for diamondlike carbon films

    Get PDF
    Ellipsometric measurements on plasma deposited diamondlike amorphous carbon (a-C:H) films were taken in the visible, (E = 1.75 to 3.5 eV). The films were deposited on Si and their properties were varied using high temperature (up to 750 C) anneals. The real (n) and imaginary (k) parts of the complex index of refraction, N, were obtained simultaneously. Following the theory of Forouhi and Bloomer, a least squares fit was used to find the dispersion relations n(E) and k(E). Reasonably good fits were obtained, showing that the theory can be used for a-C:H films. Moreover, the value of the energy gap, Eg, obtained in this way was compared the the Eg value using conventional Tauc plots and reasonably good agreement was obtained

    Computer control of a scanning electron microscope for digital image processing of thermal-wave images

    Get PDF
    Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest

    Adhesion, friction, and deformation of ion-beam-deposited boron nitride films

    Get PDF
    The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate
    • …
    corecore