4 research outputs found

    A multicenter assessment of interreader reliability of LI-RADS version 2018 for MRI and CT

    Get PDF
    Background: Various limitations have impacted research evaluating reader agreement for Liver Imaging-Reporting and Data System (LI-RADS). Purpose: To assess reader agreement of LI-RADS in an international multi-center, multireader setting using scrollable images. Materials and Methods: This retrospective study used de-identified clinical multiphase CT and MRI examinations and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 – August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS v2018 category was computed as a re-scored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1/2, LR-3, LR-4, LR-5/M/tumor in vein) was computed using intra-class correlation coefficients (ICC). Agreement was also computed for dichotomized malignancy (LR-4/LR5/LR-M/LR-tumor in vein), LR-5, and LR-M. Agreement was compared between researchversus-research reads and research-versus-clinical reads. Results: 484 patients (mean age, 62 years ±10 [SD]; 156 women; 93 CT, 391 MRI) were included. ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.62, 0.74), 0.63 (95% CI: 0.56, 0.71), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs. 0.62, P = .03) and for dichotomized malignancy (ICC, 0.63 vs. 0.53, P = .005), but not for LR-5 (P = .14) or LR-M (P = .94). Conclusion: There was moderate agreement for Liver Imaging-Reporting and Data System v2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study

    Liver fibrosis imaging: A clinical review of ultrasound and magnetic resonance elastography.

    No full text
    Liver fibrosis is a histological hallmark of most chronic liver diseases, which can progress to cirrhosis and liver failure, and predisposes to hepatocellular carcinoma. Accurate diagnosis of liver fibrosis is necessary for prognosis, risk stratification, and treatment decision-making. Liver biopsy, the reference standard for assessing liver fibrosis, is invasive, costly, and impractical for surveillance and treatment response monitoring. Elastography offers a noninvasive, objective, and quantitative alternative to liver biopsy. This article discusses the need for noninvasive assessment of liver fibrosis and reviews the comparative advantages and limitations of ultrasound and magnetic resonance elastography techniques with respect to their basic concepts, acquisition, processing, and diagnostic performance. Variations in clinical contexts of use and common pitfalls associated with each technique are considered. In addition, current challenges and future directions to improve the diagnostic accuracy and clinical utility of elastography techniques are discussed. Level of Evidence: 5 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:25-42
    corecore