15,240 research outputs found

    Circuit prevents overcharging of secondary cell batteries

    Get PDF
    Circuit prevents battery cell overcharging by detecting and reducing the charging voltage to the open-circuit voltage of the battery when this current falls to a predetermined value. The voltage control depends on the fact that the charging current falls significantly when the battery nears its fully charged state

    ISR performance and present developments

    Get PDF

    Zero-bias peaks in spin-orbit coupled superconducting wires with and without Majorana end-states

    Full text link
    One of the simplest proposed experimental probes of a Majorana bound-state is a quantized (2e^2/h) value of zero-bias tunneling conductance. When temperature is somewhat larger than the intrinsic width of the Majorana peak, conductance is no longer quantized, but a zero-bias peak can remain. Such a non-quantized zero-bias peak has been recently reported for semiconducting nanowires with proximity induced superconductivity. In this paper we analyze the relation of the zero-bias peak to the presence of Majorana end-states, by simulating the tunneling conductance for multi-band wires with realistic amounts of disorder. We show that this system generically exhibits a (non-quantized) zero-bias peak even when the wire is topologically trivial and does not possess Majorana end-states. We make comparisons to recent experiments, and discuss the necessary requirements for confirming the existence of a Majorana state.Comment: 5 pages, 4 Figure

    Simultaneous optical polarimetry and X-ray data of the near synchronous polar RX J2115-5840

    Full text link
    We present simultaneous optical polarimetry and X-ray data of the near synchronous polar RX J2115-5840. We model the polarisation data using the Stokes imaging technique of Potter et al. We find that the data are best modelled using a relatively high binary inclination and a small angle between the magnetic and spin axes. We find that for all spin-orbit beat phases, a significant proportion of the accretion flow is directed onto the lower hemisphere of the white dwarf, producing negative circular polarisation. Only for a small fraction of the beat cycle is a proportion of the flow directed onto the upper hemisphere. However, the accretion flow never occurs near the upper magnetic pole, whatever the orientation of the magnetic poles. This indicates the presence of a non-dipole field with the field strength at the upper pole significantly higher. We find that the brightest parts of the hard X-ray emitting region and the cyclotron region are closely coincident.Comment: 9 pages, accepted for publication in MNRAS 2 March 200

    The effect of two-temperature post-shock accretion flow on the linear polarization pulse in magnetic cataclysmic variables

    Full text link
    The temperatures of electrons and ions in the post-shock accretion region of a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass flow rates or for sufficiently weak magnetic fields. At lower mass flow rates or in stronger magnetic fields, efficient cyclotron cooling will cool the electrons faster than the electrons can cool the ions and a two-temperature flow will result. Here we investigate the differences in polarized radiation expected from mCV post-shock accretion columns modeled with one- and two-temperature hydrodynamics. In an mCV model with one accretion region, a magnetic field >~30 MG and a specific mass flow rate of ~0.5 g/cm/cm/s, along with a relatively generic geometric orientation of the system, we find that in the ultraviolet either a single linear polarization pulse per binary orbit or two pulses per binary orbit can be expected, depending on the accretion column hydrodynamic structure (one- or two-temperature) modeled. Under conditions where the physical flow is two-temperature, one pulse per orbit is predicted from a single accretion region where a one-temperature model predicts two pulses. The intensity light curves show similar pulse behavior but there is very little difference between the circular polarization predictions of one- and two-temperature models. Such discrepancies indicate that it is important to model some aspect of two-temperature flow in indirect imaging procedures, like Stokes imaging, especially at the edges of extended accretion regions, were the specific mass flow is low, and especially for ultraviolet data.Comment: Accepted for publication in Astrophysics & Space Scienc

    The Large Hadron Collider (LHC) project of CERN

    Get PDF
    The Large Hadron Collider (LHC) was approved by CERN's Council in December 1994 and a conceptual accelerator design published in October 1995. The LHC will provide proton-proton collisions of 7 TeV + 7 TeV with a luminosity of up to 1034^{34}cm−2^{-2}s−1^{-1}, at two collision points and lead-ion collisions with a total centre of mass energy of 1148 TeV and a luminosity up to 1027^{27}cm−2^{-2}s−1^{-1}. In this paper the status of the collider project will be described with emphasis on the latest developments. The experimental programme of the LHC is also in the process of being defined and is expected to include a dedicated heavy-ion detector, ALICE, and a specialised B-physics spectrometer, LHCb, as well as the already approved, high luminosity, general purpose detectors, ATLAS and CMS. A description of the experimental areas foreseen for these experiments will be given
    • …
    corecore