28 research outputs found

    作物近縁野生種の収集と調査, 1997 : 1. 東北地方におけるアズキおよびダイズ近縁野生種

    Get PDF
    An exploration mission was made to collect seeds, nodules and herbarium specimens of wild azuki bean (Vigna angularis var. nipponensis) and wild soybean (Glycine soja) from 6^ to 11^ October in the Tohoku region of Japan. A total of 21 samples of germplasm which consist of 10 samples of wild soybean, 5 of wild azuki bean, 2 of weedy azuki bean, and 4 of Vicia spp. were collected. Wild soybean was found in every prefectures visited, whereas wild azuki bean was not found in Iwate, Aomori and the northern part of Akita prefectures (the northern part of Tohoku region). The northernmost collection site of wild azuki bean was Yokote, Akita prefecture (Site No. 56). A weedy azuki bean collected in Yonezawa, Yamagata prefecture (Site No. 60) had pale brown pods containing tan seeds, which differs in color from the other samples of wild and weedy azuki bean (brown pods with black mottled seeds). After seed increase, accessions will be preserved in the MAFF genebank. Herbarium specimens are deposited in the MAFF genebank herbarium

    Methods for evaluating gene expression from Affymetrix microarray datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Affymetrix high density oligonucleotide expression arrays are widely used across all fields of biological research for measuring genome-wide gene expression. An important step in processing oligonucleotide microarray data is to produce a single value for the gene expression level of an RNA transcript using one of a growing number of statistical methods. The challenge for the researcher is to decide on the most appropriate method to use to address a specific biological question with a given dataset. Although several research efforts have focused on assessing performance of a few methods in evaluating gene expression from RNA hybridization experiments with different datasets, the relative merits of the methods currently available in the literature for evaluating genome-wide gene expression from Affymetrix microarray data collected from real biological experiments remain actively debated.</p> <p>Results</p> <p>The present study reports a comprehensive survey of the performance of all seven commonly used methods in evaluating genome-wide gene expression from a well-designed experiment using Affymetrix microarrays. The experiment profiled eight genetically divergent barley cultivars each with three biological replicates. The dataset so obtained confers a balanced and idealized structure for the present analysis. The methods were evaluated on their sensitivity for detecting differentially expressed genes, reproducibility of expression values across replicates, and consistency in calling differentially expressed genes. The number of genes detected as differentially expressed among methods differed by a factor of two or more at a given false discovery rate (FDR) level. Moreover, we propose the use of genes containing single feature polymorphisms (SFPs) as an empirical test for comparison among methods for the ability to detect true differential gene expression on the basis that SFPs largely correspond to <it>cis</it>-acting expression regulators. The PDNN method demonstrated superiority over all other methods in every comparison, whilst the default Affymetrix MAS5.0 method was clearly inferior.</p> <p>Conclusion</p> <p>A comprehensive assessment of seven commonly used data extraction methods based on an extensive barley Affymetrix gene expression dataset has shown that the PDNN method has superior performance for the detection of differentially expressed genes.</p

    The highly divergent Jekyll genes, required for sexual reproduction, are lineage specific for the related grass tribes Triticeae and Bromeae

    Get PDF
    Phylogenetically related groups of species contain lineage-specific genes that exhibit no sequence similarity to any genes outside the lineage. We describe here that the Jekyll gene, required for sexual reproduction, exists in two much diverged allelic variants, Jek1 and Jek3. Despite low similarity, the Jek1 and Jek3 proteins share identical signal peptides, conserved cysteine positions and direct repeats. The Jek1/Jek3 sequences are located at the same chromosomal locus and inherited in a monogenic Mendelian fashion. Jek3 has a similar expression as Jek1 and complements the Jek1 function in Jek1-deficient plants. Jek1 and Jek3 allelic variants were almost equally distributed in a collection of 485 wild and domesticated barley accessions. All domesticated barleys harboring the Jek1 allele belong to single haplotype J1-H1 indicating a genetic bottleneck during domestication. Domesticated barleys harboring the Jek3 allele consisted of three haplotypes. Jekyll-like sequences were found only in species of the closely related tribes Bromeae and Triticeae but not in other Poaceae. Non-invasive magnetic resonance imaging revealed intrinsic grain structure in Triticeae and Bromeae, associated with the Jekyll function. The emergence of Jekyll suggests its role in the separation of the Bromeae and Triticeae lineages within the Poaceae and identifies the Jekyll genes as lineage-specific

    Exploration and Collection of Wild Vicia Species in Nagano and Niigata Prefectures, Japan 17th-19th October 1999

    Get PDF
    From 17th-19th October 1999 an international group visited Nagano and Niigata prefectures to explore and collect Japanese Vicia (Fig. 1). A total of six species including two varieties of Vicia venosa were collected around Matsumoto city and Mount Hakuba. Many native Japanese Vicia species are readily found in Nagano in a wide variety of habitats : forest under storey, forest margin and grassy banks. The altitude at which the populations were growing varied from 650m to 1285m. The native Japanese Vicia are of evolutionary interest. The Japanese native Vicia species have been little studied for their economic value thus further attention to these native Japanese wild legumes is warranted.1999年10月17日から10月19日にかけて, 長野県および新潟県でのソラマメ近縁野生種の探索を行った. その結果, 松本市周辺および白馬山において Vicia venosa 2変種を含めたソラマメ属計6種を収集することができた. それらは標高650mから1285mまで分布し, 森の中, 森の周辺, 傾斜地といった様々な場所で確認することができた. これらの素材は栽培種が所属する亜属とは異なる亜属に所属するが, 日本固有種として重要と考えられ, ソラマメ属進化の研究にも大きく貢献するものと期待される

    Robust Detection and Genotyping of Single Feature Polymorphisms from Gene Expression Data

    Get PDF
    It is well known that Affymetrix microarrays are widely used to predict genome-wide gene expression and genome-wide genetic polymorphisms from RNA and genomic DNA hybridization experiments, respectively. It has recently been proposed to integrate the two predictions by use of RNA microarray data only. Although the ability to detect single feature polymorphisms (SFPs) from RNA microarray data has many practical implications for genome study in both sequenced and unsequenced species, it raises enormous challenges for statistical modelling and analysis of microarray gene expression data for this objective. Several methods are proposed to predict SFPs from the gene expression profile. However, their performance is highly vulnerable to differential expression of genes. The SFPs thus predicted are eventually a reflection of differentially expressed genes rather than genuine sequence polymorphisms. To address the problem, we developed a novel statistical method to separate the binding affinity between a transcript and its targeting probe and the parameter measuring transcript abundance from perfect-match hybridization values of Affymetrix gene expression data. We implemented a Bayesian approach to detect SFPs and to genotype a segregating population at the detected SFPs. Based on analysis of three Affymetrix microarray datasets, we demonstrated that the present method confers a significantly improved robustness and accuracy in detecting the SFPs that carry genuine sequence polymorphisms when compared to its rivals in the literature. The method developed in this paper will provide experimental genomicists with advanced analytical tools for appropriate and efficient analysis of their microarray experiments and biostatisticians with insightful interpretation of Affymetrix microarray data

    Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines

    No full text
    Abstract Background Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. Results In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, “Ppd-m” and “Ppd-w” with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the “Ppd-m” line, which flowered four days earlier than “Ppd-w”, was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in “Ppd-m”. Microsatellite genotyping demonstrated that in the line “Ppd-m”, there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the “Ppd-w” does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the “Ppd-m” line than in “Ppd-w”, suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of “Ppd-m” as compared to “Ppd-w”. Conclusions We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a copy number variation but also distinct regulatory elements

    Additional file 1: Table S1. of Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines

    No full text
    Correlation coefficients of the expression patterns of the flowering genes. Bold font indicates significant values (P = 0.001). PI means Photoperiod Insensitive and PSL means Photoperiod Sensitive samples. (XLSX 26 kb

    Impact of the 7-bp deletion in HvGA20ox2 gene on agronomic important traits in barley (Hordeum vulgare L.)

    No full text
    Abstract Background Alike to Reduced height-1 (Rht-1) genes in wheat and the semi dwarfing (sd-1) gene in rice, the sdw1/denso locus involved in the metabolism of the GA, was designated as the ‘Green Revolution’ gene in barley. The recent molecular characterization of the candidate gene HvGA20ox2 for sdw1/denso locus allows to estimate the impact of the functional polymorphism of this gene on the variation of agronomically important traits in barley. Results We investigated the effect of the 7-bp deletion in exon 1 of HvGA20ox2 gene (sdw1.d mutation) on the variation of yield-related and malting quality traits in the population of DHLs derived from cross of medium tall barley Morex and semi-dwarf barley Barke. Segregation of plant height, flowering time, thousand grain weight, grain protein content and grain starch was evaluated in two diverse environments separated from one another by 15° of latitude. The 7-bp deletion in HvGA20ox2 gene reduced plant height by approximately 13 cm and delayed flowering time by 3–5 days in the barley segregating DHLs population independently on environmental cue. On other hand, the sdw1.d mutation did not affect significantly either grain quality traits (protein and starch content) or thousand grain weight. Conclusions The beneficial effect of the sdw1.d allele could be associated in barley with lodging resistance and extended period of vegetative growth allowing to accumulate additional biomass that supports higher yield in certain environments. However, no direct effect of the sdw1.d mutation on thousand grain weight or grain quality traits in barley was detected
    corecore