21 research outputs found

    Multigene panel sequencing of established and candidate melanoma susceptibility genes in a large cohort of Dutch non-CDKN2A/CDK4 melanoma families.

    Get PDF
    Germline mutations in the major melanoma susceptibility gene CDKN2A explain genetic predisposition in only 10-40% of melanoma-prone families. In our study we comprehensively characterized 488 melanoma cases from 451 non-CDKN2A/CDK4 families for mutations in 30 established and candidate melanoma susceptibility genes using a custom-designed targeted gene panel approach. We identified (likely) pathogenic variants in established melanoma susceptibility genes in 18 families (n = 3 BAP1, n = 15 MITF p.E318K; diagnostic yield 4.0%). Among the three identified BAP1-families, there were no reported diagnoses of uveal melanoma or malignant mesothelioma. We additionally identified two potentially deleterious missense variants in the telomere maintenance genes ACD and TERF2IP, but none in the POT1 gene. MC1R risk variants were strongly enriched in our familial melanoma cohort compared to healthy controls (R variants: OR 3.67, 95% CI 2.88-4.68, p <0.001). Several variants of interest were also identified in candidate melanoma susceptibility genes, in particular rare (pathogenic) variants in the albinism gene OCA2 were repeatedly found. We conclude that multigene panel testing for familial melanoma is appropriate considering the additional 4% diagnostic yield in non-CDKN2A/CDK4 families. Our study shows that BAP1 and MITF are important genes to be included in such a diagnostic test

    Genotype-phenotype correlations for pancreatic cancer risk in Dutch melanoma families with pathogenic CDKN2A variants

    Get PDF
    BACKGROUND: Pathogenic variants in the CDKN2A gene are generally associated with the development of melanoma and pancreatic ductal adenocarcinoma (PDAC), but specific genotype-phenotype correlations might exist and the extent of PDAC risk is not well established for many variants. METHODS: Using the Dutch national familial melanoma database, we identified all families with a pathogenic CDKN2A variant and investigated the occurrence of PDAC within these families. We also estimated the standardised incidence ratio and lifetime PDAC risk for carriers of a highly prevalent variant in these families. RESULTS: We identified 172 families in which 649 individuals carried 15 different pathogenic variants. The most prevalent variant was the founder mutation c.225_243del (p16-Leiden, 484 proven carriers). Second most prevalent was c.67G>C (55 proven carriers). PDAC developed in 95 of 163 families (58%, including 373 of 629 proven carriers) harbouring a variant with an effect on the p16INK4a protein, whereas PDAC did not occur in the 9 families (20 proven carriers) with a variant affecting only p14ARF. In the c.67G>C families, PDAC occurred in 12 of the 251 (5%) persons at risk. The standardised incidence ratio was 19.1 (95% CI 8.3 to 33.6) and the cumulative PDAC incidence at age 75 years (lifetime risk) was 19% (95% CI 7.5% to 30.1%). CONCLUSIONS: Our results support the notion that pathogenic CDKN2A variants affecting the p16INK4a protein, including c.67G>C, are associated with increased PDAC risk and carriers of such variants should be offered pancreatic cancer surveillance. There is no clinical evidence that impairment of only the p14ARF protein leads to an increased PDAC risk

    Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans.

    Get PDF
    At the CDKN2A/B locus, three independent signals for type 2 diabetes risk are located in a non-coding region near CDKN2A. The disease-associated alleles have been implicated in reduced β-cell function, but the underlying mechanism remains elusive. In mice, β-cell specific loss of Cdkn2a causes hyperplasia whilst overexpression leads to diabetes, highlighting CDKN2A as a candidate effector transcript. Rare CDKN2A loss-of-function mutations are a cause of familial melanoma and offer the opportunity to determine the impact of CDKN2A haploinsufficiency on glucose homeostasis in humans. To test the hypothesis that such individuals have improved β-cell function, we performed oral and intravenous glucose tolerance tests on mutation carriers and matched controls. Compared with controls, carriers displayed increased insulin secretion, impaired insulin sensitivity and reduced hepatic insulin clearance. These results are consistent with a model whereby CDKN2A-loss affects a range of different tissues, including pancreatic β-cells and liver. To test for direct effects of CDKN2A-loss on β-cell function, we performed knockdown in a human β-cell line, EndoC-bH1. This revealed increased insulin secretion independent of proliferation. Overall, we demonstrate that CDKN2A is an important regulator of glucose homeostasis in humans, thus supporting its candidacy as an effector transcript for type 2 diabetes-associated alleles in the region

    Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans.

    Get PDF
    At the CDKN2A/B locus, three independent signals for type 2 diabetes risk are located in a non-coding region near CDKN2A. The disease-associated alleles have been implicated in reduced β-cell function, but the underlying mechanism remains elusive. In mice, β-cell specific loss of Cdkn2a causes hyperplasia whilst overexpression leads to diabetes, highlighting CDKN2A as a candidate effector transcript. Rare CDKN2A loss-of-function mutations are a cause of familial melanoma and offer the opportunity to determine the impact of CDKN2A haploinsufficiency on glucose homeostasis in humans. To test the hypothesis that such individuals have improved β-cell function, we performed oral and intravenous glucose tolerance tests on mutation carriers and matched controls. Compared with controls, carriers displayed increased insulin secretion, impaired insulin sensitivity and reduced hepatic insulin clearance. These results are consistent with a model whereby CDKN2A-loss affects a range of different tissues, including pancreatic β-cells and liver. To test for direct effects of CDKN2A-loss on β-cell function, we performed knockdown in a human β-cell line, EndoC-bH1. This revealed increased insulin secretion independent of proliferation. Overall, we demonstrate that CDKN2A is an important regulator of glucose homeostasis in humans, thus supporting its candidacy as an effector transcript for type 2 diabetes-associated alleles in the region

    Families with BAP1-tumor predisposition syndrome in The Netherlands: Path to identification and a proposal for genetic screening guidelines

    Get PDF
    Germline pathogenic variants in the BRCA1-associated protein-1 (BAP1) gene cause the BAP1-tumor predisposition syndrome (BAP1-TPDS, OMIM 614327). BAP1-TPDS is associated with an increased risk of developing uveal melanoma (UM), cutaneous melanoma (CM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), meningioma, cholangiocarcinoma, multiple non-melanoma skin cancers, and BAP1-inactivated nevi. Because of this increased risk, it is important to identify patients with BAP1-TPDS. The associated tumors are treated by different medical disciplines, emphasizing the need for generally applicable guidelines for initiating genetic analysis. In this study, we describe the path to identification of BAP1-TPDS in 21 probands found in the Netherlands and the family history at the time of presentation. We report two cases of de novo BAP1 germline mutations (2/21, 9.5%). Findings of this study combined with previously published literature, led to a proposal of guidelines for genetic referral. We recommend genetic analysis in patients with ≥2 BAP1-TPDS-associated tumors in their medical history and/or family history. We also propose to test germline BAP1 in patients diagnosed with UM <40 years, CM <18 years, MMe <50 years, or RCC <46 years. Furthermore, other candidate susceptibility genes for tumor types associated with BAP1-TPDS are discussed, which can be included in gene panels when testing patients

    Constitutional mismatch repair deficiency in a healthy child : On the spot diagnosis?

    No full text
    Constitutional mismatch repair deficiency (CMMRD) is a rare, recessively inherited childhood cancer predisposition syndrome caused by biallelic germline mutations in one of the mismatch repair genes. The CMMRD phenotype overlaps with that of neurofibromatosis type 1 (NF1), since many patients have multiple café-au-lait macules (CALM) and other NF1 signs, but no germline NF1 mutations. We report of a case of a healthy 6-year-old girl who fulfilled the diagnostic criteria of NF1 with >6 CALM and freckling. Since molecular genetic testing was unable to confirm the diagnosis of NF1 or Legius syndrome and the patient was a child of consanguineous parents, we suspected CMMRD and found a homozygous PMS2 mutation that impairs MMR function. Current guidelines advise testing for CMMRD only in cancer patients. However, this case illustrates that including CMMRD in the differential diagnosis in suspected sporadic NF1 without causative NF1 or SPRED1 mutations may facilitate identification of CMMRD prior to cancer development. We discuss the advantages and potential risks of this CMMRD testing scenario

    Risk of multiple pancreatic cancers in CDKN2A-p16-Leiden mutation carriers

    No full text
    CDKN2A-p16-Leiden mutation carriers have a substantial risk of developing pancreatic ductal adenocarcinoma (PDAC). One of the main clinical features of hereditary cancer is the development of multiple cancers. Since 2000, we have run a surveillance program for CDKN2A-p16-Leiden mutation carriers. The patients are offered a yearly MRI with optionally endoscopic ultrasound. In patients with a confirmed lesion, usually, a partial resection of the pancreas is recommended. A total of 18 PDAC (8.3%) were detected in 218 mutation carriers. In this report, we describe two CDKN2A-p16-Leiden patients with a synchronous and metachronous PDAC. Including two previously-reported cases, we identified four patients with multiple PDAC: two of 18 patients within the surveillance program (11%) and two patients with a proven CDKN2A-p16-Leiden mutation not participating in the surveillance program. In conclusion, this study demonstrated a high risk of developing multiple PDAC in CDKN2A-p16-Leiden mutation carriers. After detecting a primary tumor, it is very important to exclude the presence of a second synchronous tumor. Moreover, after a partial pancreatectomy for PDAC, close surveillance is necessary. In view of the current findings, offering a total pancreatectomy might be an appropriate option in patients with an early PDAC

    Variation in precursor lesions of pancreatic cancer among high-risk groups

    No full text
    PURPOSE Pancreatic ductal adenocarcinoma (PDAC) surveillance programs are currently offered to high-risk individuals aiming to detect precursor lesions or PDAC at an early stage. We assessed differences in frequency and behavior of precursor lesions and PDAC between two high-risk groups. EXPERIMENTAL DESIGN Individuals with a p16-Leiden germline mutation (N = 116; median age 54 years) and individuals from familial pancreatic cancer (FPC) families (N = 125; median age 47 years) were offered annual surveillance by MRI and magnetic resonance cholangiopancreatography (MRCP) with or without endoscopic ultrasound (EUS) for a median surveillance period of 34 months (0-127 months) or 36 months (0-110 months), respectively. Detailed information was collected on pancreatic cystic lesions detected on MRCP and precursor lesions in surgical specimens of patients who underwent pancreatic surgery. RESULTS Cystic lesions were more common in the FPC cohort (42% vs. 16% in p16-Leiden cohort), whereas PDAC was more common in the p16-Leiden cohort (7% vs. 0.8% in FPC cohort). Intraductal papillary mucinous neoplasm (IPMN) was a common finding in surgical specimens of FPC-individuals, and was only found in two patients of the p16-Leiden cohort. In the p16-Leiden cohort, a substantial proportion of cystic lesions showed growth or malignant transformation during follow-up, whereas in FPC individuals most cystic lesions remain stable. CONCLUSION In p16-Leiden mutation carriers, cystic lesions have a higher malignant potential than in FPC-individuals. On the basis of these findings, a more intensive surveillance program may be considered in this high-risk group

    CM-Score : A validated scoring system to predict CDKN2A germline mutations in melanoma families from Northern Europe

    No full text
    Background: Several factors have been reported that influence the probability of a germline CDKN2A mutation in a melanoma family. Our goal was to create a scoring system to estimate this probability, based on a set of clinical features present in the patient and his or her family. Methods: Five clinical features and their association with CDKN2A mutations were investigated in a training cohort of 1227 Dutch melanoma families (13.7% with CDKN2A mutation) using multivariate logistic regression. Predefined features included number of family members with melanoma and with multiple primary melanomas, median age at diagnosis and presence of pancreatic cancer or upper airway cancer in a family member. Based on these five features, a scoring system (CDKN2A Mutation(CM)-Score) was developed and subsequently validated in a combined Swedish and Dutch familial melanoma cohort (n=421 families; 9.0% with CDKN2A mutation). Results: All five features were significantly associated (p90% for families with ≥36 points. A CM-Score under 16 points was associated with a low mutation probability (≤4%). CM-Score performed well in both the training cohort (area under the curve (AUC) 0.89; 95% CI 0.86 to 0.92) and the external validation cohort (AUC 0.94; 95% CI 0.90 to 0.98). Conclusion: We developed a practical scoring system to predict CDKN2A mutation status among melanoma-prone families. We suggest that CDKN2A analysis should be recommended to families with a CM-Score of ≥16 points
    corecore