4 research outputs found

    Working group on ecosystem assessment of Western European shelf seas (WGEAWESS)

    Get PDF
    The ICES Working Group on Ecosystem Assessment of Western European Shelf Seas (WGEA-WESS) aims to provide high quality science in support to holistic, adaptive, evidence-based man-agement in the Celtic seas, Bay of Biscay and Iberian coast regions. The group works towards developing integrated ecosystem assessments for both the (i) Celtic Seas and (ii) Bay of Biscay and Iberian Coast which are summarized in the Ecosystem Overviews (EOs) advice products that were recently updated. Integrated Trend Analysis (ITA) were performed for multiple sub-ecoregions and used to develop an understanding of ecosystem responses to pressures at varying spatial scales. Ecosystem models (primarily Ecopath with Ecosim; EwE) were developed and identified for fisheries and spatial management advice. The updated Celtic Seas EO represents a large step forward for EOs, with the inclusion of novel sections on climate change, foodweb and productivity, the first application of the new guidelines for building the conceptual diagram, inclusion of socio-economic indicators, and progress made toward complying with the Transparent Assessment Framework (TAF). We highlight ongoing issues relevant to the development and communication of EO conceptual diagrams. A common methodology using dynamic factor analysis (DFA) was used to perform ITA in a comparable way for seven subregions. This was supported by the design and compilation of the first standardized cross-regional dataset. A comparison of the main trends evidenced among subregions over the period 1993–2020 was conducted and will be published soon. A list of available and developing EWE models for the region was also generated. Here, we re-port on the advances in temporal and spatial ecosystem modelling, such as their capacity to model the impacts of sector activities (e.g. renewables and fisheries) and quantify foodweb indi-cators. We also reflect on model quality assessment with the key run of the Irish sea EwE model. The group highlighted the hurdles and gaps in current models in support of EBM, such as the choice of a relevant functional, spatial, and temporal scales and the impacts of model structure on our capacity to draw comparisons from models of different regions. The group aims to ad-dress these issues in coming years and identify routes for ecosystem model derived information into ICES advice.info:eu-repo/semantics/publishedVersio

    SEAwise report on the effects of fishing on food webs and community diversity aimed at populating the MSFD Descriptor 4 and based on food web and end-to-end modelling.

    No full text
    The SEAwise project works to deliver a fully operational tool that will allow fishers, managers, and policy makers to easily apply Ecosystem Based Fisheries Management (EBFM) in their fisheries. This SEAwise report describes work that aims to provide a strong evidence base supporting the use of ecological indicators in fisheries management through statistical studies and end to end modelling. Our aim is to support the use of ecological indicators to guide managers towards strategies that lead to an ecologically safe space for fisheries, which we define as a range of states that provide yields for sustainable fisheries, maintains ecosystem functions and leads to low risk of overexploitation of species and loss of diversity. We show from an analysis of the past, using stock assessment model products for the northeast Atlantic and observations from scientific survey data of the North Sea, that fishing has already impacted ecosystems. Fishing on commercial fish stocks altered the balance of functional groups within the ecosystem of the northeast Atlantic, with depletions in the biomass of fish during the 1980s followed by stock rebuilding since the early 2000s, such that the biomasses of benthivorous fish and planktivorous fish are now much greater than that of piscivorous fish, which may be a sign of an improving ecosystem. Within the North Sea, fishing also appeared to have depleted the biomass of fish during the 1980s (particularly in the southern North Sea) and led to a change in the composition of species and the proportion of large individuals in the ecosystem (particularly in the northern North Sea).We use comparative ecosystem modelling, employing multiple model types, to investigate the response of foodweb and community diversity indicators under a range of fishing strategies. We consider ‘no fishing’ scenarios, under prevailing environmental conditions, as a measure of the unimpacted state of the ecosystem i.e., its carrying capacity. Our modelled unimpacted state is our ‘yardstick’ - a standard from which we can measure the impact on the ecosystem due to current levels of fishing in the current conditions. We propose that the depletion of species, the difference in biomass of each species from their unimpacted levels under prevailing environmental conditions, can provide a basis from which to evaluate the risk of loss across impacted groups within the ecosystem.We investigate if any of our selected food web and community indicators, including those used within the regional sea convention OSPAR, can support the use of assessment thresholds that may help managers reduce the risk of depletion of species or degradation of ecosystems by fishing. We explore management scenarios, linked to changes in levels of fishing impact due to current fisheries (so not favouring one type of fishing over another), to demonstrate how reducing or increasing activity levels will alter the risk of depletion of species and demonstrate how ecological indicators are expected to change given alterations in the structure of the ecosystem. We contrast these management scenarios to additional scenarios in which seabed-impacting gears only are restricted to avoid damage to habitats. This latter scenario promotes fishing on pelagic fish, such as herring and sprat, in the future and inhibits trawling for demersal fish such as sole, plaice and cod.In each model, we find clear predictable relationships between fishing mortality overall (averaged across all model groups) and the depletion risk within the ecosystem. The biomass of apex predators typically decreases as fishing mortality increases. Similarly, as the size-structure of demersal fish communities decreases, risk within the communities increase. In contrast, the balance of trophic guilds in the ecosystem and the Shannon diversity overall or by group respond in differing ways (increases and decreases with increased fishing) dependent on the type fishing strategies modelled. The indicator targets for recovery and risk-based limits proposed here will be explored further in WP6 of the project.Read more about the project at www.seawiseproject.org</p

    SEAwise Report on the key species and habitats impacted by fishing

    No full text
    The implementation of ecosystem-based fisheries management requires knowledge on the ecological impact of fishing activities on species and their habitats – those both targeted and not targeted by fisheries. To identify whichecological impacts are key and what is known about them, SEAwise consulted stakeholders through European Advisory Councils and conducted a systematic review of the scientific literature to map the available knowledge and evidence. Specific reference was given to the bycatch of Protected, Endangered and Threatened (PET) species, benthic habitats, food webs and biodiversity, and impact from fisheries-related litter and ghost nets. At the stakeholder consultations, sharks and/or elasmobranchs, turtles, species interactions, and seals or marine mammals were identified as top ranked in at least three out of the five regions. Other terms identified by at least two Case Study regions were: seabirds, sensitive species, benthic habitats, litter, PET species, invasive species and species interactions.Relevant data were extracted from 549 retained papers. The majority of studies were conducted in the Mediterranean Sea, whereas only few papers reported on fishing impacts in the Baltic Sea (see figure below). Bony fish (teleosts) and benthos were the most studied ecosystem components in all Case Study regions, whereas marine mammals and cartilaginous fish were often studied in relation to bycatch of PET species. Out of the 549 papers, most of them were related to fishing impacts on food webs and biodiversity and benthic habitats, followed bybycatch of PET species and other fishing impact studies (not related to any task). Fewest studies were related to the impact of fisheries-related litter and ghost nets. Demersal trawls were by far the most studied gear in studies on commercial fishing impacts. For recreational fisheries, hooks and lines, in particular angling, was the most studied fishing activity. Among the items identified by the stakeholders, marine mammals, seabirds and reptiles were all covered in at least 25 papers each, indicating that there is a considerable body of knowledge even though not all areas may have information for all species. Litter was the key item that was least frequently reported on in the literature, especially outside the Mediterranean, where scientific papers were rare. As a consequence, areas outside the Mediterranean may lack information for further analysis unless a dedicated effort is made in SEAwise to remedy this. The regional differences in topics identified by stakeholder scoping did not reflect the regional amount of papers available

    SEAwise Report on the key species and habitats impacted by fishing

    No full text
    The implementation of ecosystem-based fisheries management requires knowledge on the ecological impact of fishing activities on species and their habitats – those both targeted and not targeted by fisheries. To identify which ecological impacts are key and what is known about them, SEAwise consulted stakeholders through European Advisory Councils and conducted a systematic review of the scientific literature to map the available knowledge and evidence. Specific reference was given to the bycatch of Protected, Endangered and Threatened (PET) species, benthic habitats, food webs and biodiversity, and impact from fisheries-related litter and ghost nets.  At the stakeholder consultations, sharks and/or elasmobranchs, turtles, species interactions, and seals or marine mammals were identified as top ranked in at least three out of the five regions. Other terms identified by at least two Case Study regions were: seabirds, sensitive species, benthic habitats, litter, PET species, invasive species and species interactions.  Relevant data were extracted from 549 retained papers. The majority of studies were conducted in the Mediterranean Sea, whereas only few papers reported on fishing impacts in the Baltic Sea (see figure below). Bony fish (teleosts) and benthos were the most studied ecosystem components in all Case Study regions, whereas marine mammals and cartilaginous fish were often studied in relation to bycatch of PET species.  Out of the 549 papers, most of them were related to fishing impacts on food webs and biodiversity and benthic habitats, followed by bycatch of PET species and other fishing impact studies (not related to any task). Fewest studies were related to the impact of fisheries-related litter and ghost nets. Demersal trawls were by far the most studied gear in studies on commercial fishing impacts. For recreational fisheries, hooks and lines, in particular angling, was the most studied fishing activity.  Among the items identified by the stakeholders, marine mammals, seabirds and reptiles were all covered in at least 25 papers each, indicating that there is a considerable body of knowledge even though not all areas may have information for all species. Litter was the key item that was least frequently reported on in the literature, especially outside the Mediterranean, where scientific papers were rare. As a consequence, areas outside the Mediterranean may lack information for further analysis unless a dedicated effort is made in SEAwise to remedy this. The regional differences in topics identified by stakeholder scoping did not reflect the regional amount of papers available.  This report describes results of the SEAwise project. More information about the project can be found at https://seawiseproject.org/</p
    corecore