4 research outputs found

    A Study of Halo Coronal Mass Ejections and Related Flare and Radio Burst Observations in Solar Cycle 23

    Full text link
    We present a statistical study of dynamical and kinetic characteristics of CMEs which show temporal and spatial association with flares and type II radio bursts or complex radio events of type II bursts and type IV continua. This study is based on a set of earth-directed full halo CMEs occurring during the present solar cycle, with data from the Large Angle Spectrometric Coronagraphs (LASCO) and Extreme-Ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO) mission and the Magnetic Fields Investigation (MFI) and 3-D Plasma and Energetic Particle Analyzer Investigation experiment on board the WIND spacecraft.Comment: Recent Advances in Astronomy and Astrophysics: 7th International Conference of the Hellenic Astronomical Society. AIP Conference Proceedings, Volume 848, pp. 218-223 (2006

    Type II Shocks Characteristics: Comparison with associated CMEs and Flares

    Full text link
    A number of metric (100-650 MHz) typeII bursts was recorded by the ARTEMIS-IV radiospectrograph in the 1998-2000 period; the sample includes both CME driven shocks and shocks originating from flare blasts. We study their characteristics in comparison with characteristics of associated CMEs and flares.Comment: Recent Advances in Astronomy and Astrophysics: 7th International Conference of the Hellenic Astronomical Society. AIP Conference Proceedings, Volume 848, pp. 238-242 (2006

    Coronal shocks associated with CMEs and flares and their space weather consequences

    No full text
    We study the geoeffectiveness of a sample of complex events; each includes a coronal type II burst, accompanied by a GOES SXR flare and LASCO CME. The radio bursts were recorded by the ARTEMIS-IV radio spectrograph, in the 100-650 MHz range; the GOES SXR flares and SOHO/LASCO CMEs, were obtained from the Solar Geophysical Data (SGD) and the LASCO catalogue respectively. These are compared with changes of solar wind parameters and geomagnetic indices in order to establish a relationship between solar energetic events and their effects on geomagnetic activity. © 2009 International Astronomical Union
    corecore