989 research outputs found

    Magnetic-field-dependent quasiparticle energy relaxation in mesoscopic wires

    Full text link
    In order to find out if magnetic impurities can mediate interactions between quasiparticles in metals, we have measured the effect of a magnetic field B on the energy distribution function f(E) of quasiparticles in two silver wires driven out-of-equilibrium by a bias voltage U. In a sample showing sharp distributions at B=0, no magnetic field effect is found, whereas in the other sample, rounded distributions at low magnetic field get sharper as B is increased, with a characteristic field proportional to U. Comparison is made with recent calculations of the effect of magnetic-impurities-mediated interactions taking into account Kondo physics.Comment: 4 pages, 3 figures, to be published in Physical Review Letter

    Supercurrent Spectroscopy of Andreev States

    Full text link
    We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasiparticle excitations are induced by a broadband on-chip microwave source and detected by measuring changes in the supercurrent flowing through the atomic contact. Since microwave photons excite quasiparticles in pairs, two types of transitions are observed: Andreev transitions, which consists of putting two quasiparticles in an Andreev level, and transitions to odd states with a single quasiparticle in an Andreev level and the other one in the continuum. In contrast to absorption spectroscopy, supercurrent spectroscopy allows detection of long-lived odd states.Comment: typos correcte

    Phase controlled superconducting proximity effect probed by tunneling spectroscopy

    Get PDF
    Using a dual-mode STM-AFM microscope operating below 50mK we measured the Local Density of States (LDoS) along small normal wires connected at both ends to superconductors with different phases. We observe that a uniform minigap can develop in the whole normal wire and in the superconductors near the interfaces. The minigap depends periodically on the phase difference. The quasiclassical theory of superconductivity applied to a simplified 1D model geometry accounts well for the data.Comment: Accepted for publication in Physical Review Letter

    Exciting Andreev pairs in a superconducting atomic contact

    Get PDF
    The Josephson effect describes the flow of supercurrent in a weak link, such as a tunnel junction, nanowire, or molecule, between two superconductors. It is the basis for a variety of circuits and devices, with applications ranging from medicine to quantum information. Currently, experiments using Josephson circuits that behave like artificial atoms are revolutionizing the way we probe and exploit the laws of quantum physics. Microscopically, the supercurrent is carried by Andreev pair states, which are localized at the weak link. These states come in doublets and have energies inside the superconducting gap. Existing Josephson circuits are based on properties of just the ground state of each doublet and so far the excited states have not been directly detected. Here we establish their existence through spectroscopic measurements of superconducting atomic contacts. The spectra, which depend on the atomic configuration and on the phase difference between the superconductors, are in complete agreement with theory. Andreev doublets could be exploited to encode information in novel types of superconducting qubits.Comment: Submitted to Natur

    Influence of Magnetic Field on Effective Electron-Electron Interactions in a Copper Wire

    Full text link
    We have measured in a copper wire the energy exchange rate between quasiparticles as a function of the applied magnetic field. We find that the effective electron-electron interaction is strongly modified by the magnetic field, suggesting that magnetic impurities play a role on the interaction processes.Comment: latex anthore.tex, 8 files, 6 figures, 7 pages in: Proceedings of the XXXVIth Rencontres de Moriond `Electronic Correlations: From Meso- to Nano-physics' Les Arcs, France January 20-27, 2001 [SPEC-S01/027

    Theory of microwave spectroscopy of Andreev bound states with a Josephson junction

    Get PDF
    We present a microscopic theory for the current through a tunnel Josephson junction coupled to a non-linear environment, which consists of an Andreev two-level system coupled to a harmonic oscillator. It models a recent experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature (London) 499, 312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting atomic-size contact. We find the eigenenergies and eigenstates of the environment and derive the current through the junction due to inelastic Cooper pair tunneling. The current-voltage characteristic reveals the transitions between the Andreev bound states, the excitation of the harmonic mode that hybridizes with the Andreev bound states, as well as multi-photon processes. The calculated spectra are in fair agreement with the experimental data.Comment: 8 pages, 6 figure

    Density of states in a superconductor carrying a supercurrent

    Full text link
    We have measured the tunneling density of states (DOS) in a superconductor carrying a supercurrent or exposed to an external magnetic field. The pair correlations are weakened by the supercurrent, leading to a modification of the DOS and to a reduction of the gap. As predicted by the theory of superconductivity in diffusive metals, we find that this effect is similar to that of an external magnetic field.Comment: To be published in Physical Review Letter

    Intensity of Coulomb Interaction between quasiparticles in diffusive metallic wires

    Get PDF
    The energy dependence and intensity of Coulomb interaction between quasiparticles in metallic wires is obtained from two different methods: determination of the temperature dependence of the phase coherence time from the magnetoresistance, and measurements of the energy distribution function in out-of-equilibrium situations. In both types of experiment, the energy dependence of the Coulomb interaction is found to be in excellent agreement with theoretical predictions. In contrast, the intensity of the interaction agrees closely with theory only with the first method, whereas an important discrepancy is found using the second one. Different explanations are proposed, and results of a test experiment are presented.Comment: Submitted to Solid States Communication
    corecore