16 research outputs found

    Tissue-specific immunopathology in fatal COVID-19

    Get PDF
    Funding: Inflammation in COVID-19: Exploration of Critical Aspects of Pathogenesis (ICECAP) receives funding and support from the Chief Scientist Office (RapidResearch in COVID-19 programme [RARC-19] funding call, “Inflammation in Covid-19: Exploration of Critical Aspects of Pathogenesis; COV/EDI/20/10” to D.A.D., C.D.L., C.D.R., J.K.B., and D.J.H.), LifeArc (through the University of Edinburgh STOPCOVID funding award to K.D., D.A.D., and C.D.L.), UK Research and Innovation (UKRI) (Coronavirus Disease [COVID-19] Rapid Response Initiative; MR/V028790/1 to C.D.L., D.A.D., and J.A.H.), and Medical Research Scotland (CVG-1722-2020 to D.A.D., C.D.L., C.D.R., J.K.B., and D.J.H.). C.D.L. is funded by a Wellcome Trust Clinical Career Development Fellowship(206566/Z/17/Z). J.K.B. and C.D.R. are supported by the Medical Research Council (grant MC_PC_19059) as part of the International Severe AcuteRespiratory Infection Consortium Coronavirus Clinical Characterisation Consortium (ISARIC-4C). D.J.H., I.H.U., and M.E. are supported by the Industrial Centre for Artificial Intelligence Research in Digital Diagnostics. S.P. is supported by Kidney Research UK, and G.T. is supported by the Melville Trust for the Cure and Care of Cancer. Identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and sequencing work was supported by theU.S. Food and Drug Administration grant HHSF223201510104C (“Ebola Virus Disease: correlates of protection, determinants of outcome and clinicalmanagement”; amended to incorporate urgent COVID-19 studies) and contract 75F40120C00085 (“Characterization of severe coronavirus infection inhumans and model systems for medical countermeasure development and evaluation”; awarded to J.A.H.). J.A.H. is also funded by the Centre of Excellence in Infectious Diseases Research and the Alder Hey Charity. R.P.-R. is directly supported by the Medical Research Council Discovery Medicine North Doctoral Training Partnership. The group of J.A.H. is supported by the National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections at the University of Liverpool in partnership with Public Health England and in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.Rationale: In life-threatening Covid-19, corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of SARS-CoV-2 or an independent immunopathologic process is unknown. Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses, and the relationships between viral presence, inflammation, and organ injury. Methods: Tissue was acquired from eleven detailed post-mortem examinations. SARS-CoV-2 organotropism was mapped by multiplex PCR and sequencing, with cellular resolution achieved by in situ viral spike protein detection. Histological evidence of inflammation was quantified from 37 anatomical sites, and the pulmonary immune response characterized by multiplex immunofluorescence. Measurements and main results: Multiple aberrant immune responses in fatal Covid-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein, both between and within tissues. An arteritis was identified in the lung, which was further characterised as a monocyte/myeloid-rich vasculitis, and occurred along with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticulo-endothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues. Conclusions: Tissue-specific immunopathology occurs in Covid-19, implicating a significant component of immune-mediated, virus-independent immunopathology as a primary mechanism in severe disease. Our data highlight novel immunopathological mechanisms, and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma cell responses as well as promoting pathogen tolerance in Covid-19.Publisher PDFPeer reviewe

    Techniques for Load Balancing in Wireless LAN

    Get PDF
    This suggests new strategies for balancing load in a wireless network connected in star topology. The loads are assigned to each processor using divisible load theory & Different techniques [II], [III], [IV], and [V]. Divisible load theory suggests that a load can be divided arbitrarily such that each fraction of the load can be independently assigned and computed in any processor present in the network. Wireless networks are connected in such a manner that they as assemble a distributed system most of the times, which makes load balancing an important technique to maximize the throughput from the system. A wireless sensor network generally consists of a base station (or Gateway) which communicates with other nodes present in the network. The other nodes are used for Measuring and collecting various environmental and Intelligence related data. The network that we have considered is connected with the central node being the base station and the other nodes are used for calculation of load distributed by the central node. Load balancing involves distribution of all computational and communicational activities over two or more processors, links or any other computational devices present in the network. The main thing behind this is load balancing is to reduce the execution time of the load and to make sure that all the resources present in the system are utilized optimally. The IEEE 802.11 standard does not provide any mechanism to resolve load imbalance. To reduce this deficiency, various load balancing schemes have been designed. These techniques commonly take the approach of directly controlling the user-AP association by deploying Proprietary client software or hardware. Load balancing Features in their device drivers, AP firm wares, and WLAN cards. In these solutions, APs broadcast their load levels to users via modified beacon messages and each user chooses the least-loaded AP

    Blue light exposure in vitro causes toxicity to trigeminal neurons and glia through increased superoxide and hydrogen peroxide generation

    No full text
    International audienceToday the noxiousness of blue light from natural and particularly artificial (fluorescent tubes, LED panels, visual displays) sources is actively discussed in the context of various ocular diseases. Many of them have an important neurologic component and are associated with ocular pain. This neuropathic signal is provided by nociceptive neurons from trigeminal ganglia. However, the phototoxicity of blue light on trigeminal neurons has not been explored so far. The aim of the present in vitro study was to investigate the cytotoxic impact of various wavebands of visible light (410-630 nm) on primary cell culture of mouse trigeminal neural and glial cells. Three-hour exposure to narrow wavebands of blue light centered at 410, 440 and 480 nm of average 1.1 mW/cm2 irradiance provoked cell death, altered cell morphology and induced oxidative stress and inflammation. These effects were not observed for other tested visible wavebands. We observed that neurons and glial cells processed the light signal in different manner, in terms of resulting superoxide and hydrogen peroxide generation, inflammatory biomarkers expression and phototoxic mitochondrial damage. We analyzed the pathways of photic signal reception, and we proposed that, in trigeminal cells, in addition to widely known mitochondria-mediated light absorption, light could be received by means of non-visual opsins, melanopsin (opn4) and neuropsin (opn5). We also investigated the mechanisms underlying the observed phototoxicity, further suggesting an important role of the endoplasmic reticulum in neuronal transmission of blue-light-toxic message. Taken together, our results give some insight into circuit of tangled pain and photosensitivity frequently observed in patients consulting for these ocular symptoms
    corecore