117 research outputs found

    Through diffusion experiments to study the diffusion and sorption of HTO, 36Cl, 133Ba and 134Cs in crystalline rock

    Get PDF
    The spent nuclear fuel in Finland will be deposited in crystalline granitic rock in Olkiluoto, Finland. As a part of the safety assessment of the repository, series of extensive in-situ sorption and diffusion experiments and supplementary laboratory work has been done in the Olkiluoto site. Through Diffusion Experiment in a laboratory (TDElab) aims to provide applicable data for the ongoing in-situ experiment in Olkiluoto. This laboratory scale experiment resembles the in-situ experiment and aims to gain information on possible effects in values of distribution coefficients, effective diffusion coefficient and porosity that are caused by differences in laboratory and in-situ conditions. The through diffusion and sorption of tracer solution with known activities of HTO, 36Cl, 133Ba and 134Cs were studied in a decimeter scale sample of veined gneiss, which is one of the main rock types in Olkiluoto. The measured breakthrough curves were modeled taking into account the porosity of the rock and diffusion and sorption of the radionuclides using Time-Domain Random Walk (TDRW) simulations. The porosities of 0.7–0.8% were determined for the rock and effective diffusion coefficients of (3.5 ± 1.0) × 10−13 m2/s and (3.0 ± 1.0) × 10−13 m2/s were determined for HTO and 36Cl, respectively. The porosity and effective diffusion coefficients were found to be in agreement with previous results for veined gneiss. Furthermore, distribution coefficients of (1.0 ± 0.3) × 10−4 m3/kg and (2.0 ± 0.5) × 10−3 m3/kg were determined for 133Ba and 134Cs, respectively, using information about the effective diffusion coefficient determined for HTO. The distribution coefficients were found to be significantly smaller than the ones determined for crushed rock in previous studies and slightly smaller than the ones from previous in-diffusion experiments.Peer reviewe

    Comparison of water phase diffusion experiments in laboratory and in situ conditions

    Get PDF
    In some countries the spent nuclear fuel produced by nuclear power plants will be deposited in crystalline granitic rock formations. In Finland, a repository for the spent nuclear fuel is being built at Olkiluoto. The safety assessment of the repository requires a careful determination of the transport properties of the bedrock. The porosity of the bedrock and the effective diffusion coefficients and distribution coefficients of different radio-nuclides for the bedrock are used as the main parameters in the safety assessment calculations. It has been questioned whether the parameters determined using laboratory experiments can be used to estimate the parameters in the in situ conditions. In this study, laboratory and in situ water phase diffusion experiments (WPDEs) were performed to resolve the issue. In the experiments, the transport of tritiated water (HTO), Cl-36, and Na-22 was studied using similar experimental setups. Mathematical models were constructed and solved to determine the transport parameters from the measured breakthrough curves. On average, the in situ WPDEs resulted in 20 (+/- 6)% smaller porosities and 32 (+/- 10)% smaller effective diffusion coefficients for HTO and Cl-36 than the laboratory WPDEs. It was also found that in veined gneiss, the most dominant rock type of the Olkiluoto bedrock, anion exclusion reduced the retention parameters of Cl-36 compared with those of HTO. Furthermore, the distribution coefficient of Na-22 for veined gneiss was about one order of magnitude smaller in the in situ conditions than in previous laboratory batch sorption experiments. The effects of the results on the safety assessment were evaluated and discussed.Peer reviewe

    Luonnonanalogiat

    No full text

    Solute transport and retention in fractured rock

    No full text

    Modelling of the solute transport in the laboratory scale experiments

    No full text

    Modelling of Task 6D, 6E, 6F and 6F2 using the Posiva streamtube approach

    No full text

    Spatial up-scaling of the retention by matrix diffusion

    No full text
    • …
    corecore