939 research outputs found

    Cosmic Analogues of the Stern-Gerlach Experiment and the Detection of Light Bosons

    Full text link
    We show that, by studying the arrival times of radio pulses from highly-magnetized pulsars, it may be possible to detect light spin-0 bosons (such as axions and axion-like particles) with a much greater sensitivity, over a broad particle mass range than is currently reachable by terrestrial experiments and indirect astrophysical bounds. In particular, we study the effect of splitting of photon-boson beams under intense magnetic field gradients in magnetars and show that radio pulses (at meter wavelengths) may be split and shift by a discernible phase down to a photon-boson coupling constant of g ~ 1e-14 [1/GeV]; i.e., about four orders of magnitude lower than current upper limits on g. The effect increases linearly with photon wavelength with split pulses having equal fluxes and similar polarizations. These properties make the identification of beam-splitting and beam deflection effects straightforward with currently available data. Better understanding of radio emission from magnetars is, however, required to confidently exclude regions in the parameter space when such effects are not observed.Comment: 4 pages, 3 figure

    Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects

    Full text link
    We present numerical calculations of the equation of state for dense matter in high magnetic fields, using a temperature dependent Thomas-Fermi theory with a magnetic field that takes all Landau levels into account. Free energies for atoms and matter are also calculated as well as profiles of the electron density as a function of distance from the atomic nucleus for representative values of the magnetic field strength, total matter density, and temperature. The Landau shell structure, which is so prominent in cold dense matter in high magnetic fields, is still clearly present at finite temperature as long as it is less than approximately one tenth of the cyclotron energy. This structure is reflected in an oscillatory behaviour of the equation of state and other thermodynamic properties of dense matter and hence also in profiles of the density and pressure as functions of depth in the surface layers of magnetic neutron stars. These oscillations are completely smoothed out by thermal effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap

    Thermal conductivity of ions in a neutron star envelope

    Full text link
    We analyze the thermal conductivity of ions (equivalent to the conductivity of phonons in crystalline matter) in a neutron star envelope. We calculate the ion/phonon thermal conductivity in a crystal of atomic nuclei using variational formalism and performing momentum-space integration by Monte Carlo method. We take into account phonon-phonon and phonon-electron scattering mechanisms and show that phonon-electron scattering dominates at not too low densities. We extract the ion thermal conductivity in ion liquid or gas from literature. Numerical values of the ion/phonon conductivity are approximated by analytical expressions, valid for T>10^5 K and 10^5 g cm^-3 < \rho < 10^14 g cm^-3. Typical magnetic fields B~10^12 G in neutron star envelopes do not affect this conductivity although they strongly reduce the electron thermal conductivity across the magnetic field. The ion thermal conductivity remains much smaller than the electron conductivity along the magnetic field. However, in the outer neutron star envelope it can be larger than the electron conductivity across the field, that is important for heat transport across magnetic field lines in cooling neutron stars. The ion conductivity can greatly reduce the anisotropy of heat conduction in outer envelopes of magnetized neutron stars.Comment: 12 pages, 5 figures; to appear in MNRA

    Basic Chemical Models of Nonideal Atomic Plasma

    Full text link
    The concept of basic chemical models is introduced, which is new from the standpoint of the physics of nonideal atomic plasma. This concept is based on the requirement of full conformity of the expression for free energy in the chemical model of plasma to exact asymptotic expansions obtained in the grand canonical ensemble within the physical model of plasma. The thermodynamic functions and equations of state and ionization equilibrium are obtained for three basic chemical models differing from one another by the choice of the atomic partition function. Comparison is made with the experimental results for nonideal plasma of cesium and inert gases. It is demonstrated that the best fit to experiment is shown by the results obtained using a basic chemical model with atomic partition function in the nearest neighbor approximation with classical determination of the size of excited atom.Comment: 18 pages, 10 gigure
    • …
    corecore