31 research outputs found

    Blood transcriptomics of drug-na\uefve sporadic Parkinson's disease patients

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder that is clinically defined in terms of motor symptoms. These are preceded by prodromal non-motor manifestations that prove the systemic nature of the disease. Identifying genes and pathways altered in living patients provide new information on the diagnosis and pathogenesis of sporadic PD. METHODS: Changes in gene expression in the blood of 40 sporadic PD patients and 20 healthy controls ("Discovery set") were analyzed by taking advantage of the Affymetrix platform. Patients were at the onset of motor symptoms and before initiating any pharmacological treatment. Data analysis was performed by applying Ranking-Principal Component Analysis, PUMA and Significance Analysis of Microarrays. Functional annotations were assigned using GO, DAVID, GSEA to unveil significant enriched biological processes in the differentially expressed genes. The expressions of selected genes were validated using RT-qPCR and samples from an independent cohort of 12 patients and controls ("Validation set"). RESULTS: Gene expression profiling of blood samples discriminates PD patients from healthy controls and identifies differentially expressed genes in blood. The majority of these are also present in dopaminergic neurons of the Substantia Nigra, the key site of neurodegeneration. Together with neuronal apoptosis, lymphocyte activation and mitochondrial dysfunction, already found in previous analysis of PD blood and post-mortem brains, we unveiled transcriptome changes enriched in biological terms related to epigenetic modifications including chromatin remodeling and methylation. Candidate transcripts as CBX5, TCF3, MAN1C1 and DOCK10 were validated by RT-qPCR. CONCLUSIONS: Our data support the use of blood transcriptomics to study neurodegenerative diseases. It identifies changes in crucial components of chromatin remodeling and methylation machineries as early events in sporadic PD suggesting epigenetics as target for therapeutic intervention

    Impaired Inflammatory Responses in Murine Lrrk2-Knockdown Brain Microglia

    Get PDF
    LRRK2, a Parkinson's disease associated gene, is highly expressed in microglia in addition to neurons; however, its function in microglia has not been evaluated. Using Lrrk2 knockdown (Lrrk2-KD) murine microglia prepared by lentiviral-mediated transfer of Lrrk2-specific small inhibitory hairpin RNA (shRNA), we found that Lrrk2 deficiency attenuated lipopolysaccharide (LPS)-induced mRNA and/or protein expression of inducible nitric oxide synthase, TNF-α, IL-1ÎČ and IL-6. LPS-induced phosphorylation of p38 mitogen-activated protein kinase and stimulation of NF-ÎșB-responsive luciferase reporter activity was also decreased in Lrrk2-KD cells. Interestingly, the decrease in NF-ÎșB transcriptional activity measured by luciferase assays appeared to reflect increased binding of the inhibitory NF-ÎșB homodimer, p50/p50, to DNA. In LPS-responsive HEK293T cells, overexpression of the human LRRK2 pathologic, kinase-active mutant G2019S increased basal and LPS-induced levels of phosphorylated p38 and JNK, whereas wild-type and other pathologic (R1441C and G2385R) or artificial kinase-dead (D1994A) LRRK2 mutants either enhanced or did not change basal and LPS-induced p38 and JNK phosphorylation levels. However, wild-type LRRK2 and all LRRK2 mutant variants equally enhanced NF-ÎșB transcriptional activity. Taken together, these results suggest that LRRK2 is a positive regulator of inflammation in murine microglia, and LRRK2 mutations may alter the microenvironment of the brain to favor neuroinflammation
    corecore