65 research outputs found

    The Mycotoxin Deoxynivalenol Potentiates Intestinal Inflammation by Salmonella Typhimurium in Porcine Ileal Loops

    Get PDF
    Background and Aims: Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium. Methodology: By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium. Results: A significant higher expression of IL-12 and TNF alpha and a clear potentiation of the expression of IL-1 beta, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 mu g/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 mu g/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON. Conclusion: These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut

    Differentially Evolved Genes of Salmonella Pathogenicity Islands: Insights into the Mechanism of Host Specificity in Salmonella

    Get PDF
    BACKGROUND: The species Salmonella enterica (S. enterica) includes many serovars that cause disease in avian and mammalian hosts. These serovars differ greatly in their host range and their degree of host adaptation. The host specificity of S. enterica serovars appears to be a complex phenomenon governed by multiple factors acting at different stages of the infection process, which makes identification of the cause/s of host specificity solely by experimental methods difficult. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have employed a molecular evolution and phylogenetics based approach to identify genes that might play important roles in conferring host specificity to different serovars of S. enterica. These genes are 'differentially evolved' in different S. enterica serovars. This list of 'differentially evolved' genes includes genes that encode translocon proteins (SipD, SseC and SseD) of both Salmonella pathogenicity islands 1 and 2 encoded type three secretion systems, sptP, which encodes an effector protein that inhibits the mitogen-activated protein kinase pathway of the host cell, and genes which encode effector proteins (SseF and SifA) that are important in placing the Salmonella-containing vacuole in a juxtanuclear position. CONCLUSIONS/SIGNIFICANCE: Analysis of known functions of these 'differentially evolved genes' indicates that the products of these genes directly interact with the host cell and manipulate its functions and thereby confer host specificity, at least in part, to different serovars of S. enterica that are considered in this study

    Analysis of infectious virus clones from two HIV-1 superinfection cases suggests that the primary strains have lower fitness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two HIV-1 positive patients, L and P, participating in the Amsterdam Cohort studies acquired an HIV-1 superinfection within half a year from their primary HIV-1 infection (Jurriaans <it>et al</it>., <it>JAIDS </it>2008, <b>47:</b>69-73). The aim of this study was to compare the replicative fitness of the primary and superinfecting HIV-1 strains of both patients. The use of isolate-specific primer sets indicated that the primary and secondary strains co-exist in plasma at all time points after the moment of superinfection.</p> <p>Results</p> <p>Biological HIV-1 clones were derived from peripheral blood CD4 + T cells at different time point, and identified as the primary or secondary virus through sequence analysis. Replication competition assays were performed with selected virus pairs in PHA/IL-2 activated peripheral blood mononuclear cells (PBMC's) and analyzed with the Heteroduplex Tracking Assay (HTA) and isolate-specific PCR amplification. In both cases, we found a replicative advantage of the secondary HIV-1 strain over the primary virus. Full-length HIV-1 genomes were sequenced to find possible explanations for the difference in replication capacity. Mutations that could negatively affect viral replication were identified in the primary infecting strains. In patient L, the primary strain has two insertions in the LTR promoter, combined with a mutation in the <it>tat </it>gene that has been associated with decreased replication capacity. The primary HIV-1 strain isolated from patient P has two mutations in the LTR that have been associated with a reduced replication rate. In a luciferase assay, only the LTR from the primary virus of patient P had lower transcriptional activity compared with the superinfecting virus.</p> <p>Conclusions</p> <p>These preliminary findings suggest the interesting scenario that superinfection occurs preferentially in patients infected with a relatively attenuated HIV-1 isolate.</p

    Genome Sequence of the Versatile Fish Pathogen Edwardsiella tarda Provides Insights into its Adaptation to Broad Host Ranges and Intracellular Niches

    Get PDF
    BACKGROUND:Edwardsiella tarda is the etiologic agent of edwardsiellosis, a devastating fish disease prevailing in worldwide aquaculture industries. Here we describe the complete genome of E. tarda, EIB202, a highly virulent and multi-drug resistant isolate in China. METHODOLOGY/PRINCIPAL FINDINGS:E. tarda EIB202 possesses a single chromosome of 3,760,463 base pairs containing 3,486 predicted protein coding sequences, 8 ribosomal rRNA operons, and 95 tRNA genes, and a 43,703 bp conjugative plasmid harboring multi-drug resistant determinants and encoding type IV A secretion system components. We identified a full spectrum of genetic properties related to its genome plasticity such as repeated sequences, insertion sequences, phage-like proteins, integrases, recombinases and genomic islands. In addition, analysis also indicated that a substantial proportion of the E. tarda genome might be devoted to the growth and survival under diverse conditions including intracellular niches, with a large number of aerobic or anaerobic respiration-associated proteins, signal transduction proteins as well as proteins involved in various stress adaptations. A pool of genes for secretion systems, pili formation, nonfimbrial adhesions, invasions and hemagglutinins, chondroitinases, hemolysins, iron scavenging systems as well as the incomplete flagellar biogenesis might feature its surface structures and pathogenesis in a fish body. CONCLUSION/SIGNIFICANCE:Genomic analysis of the bacterium offered insights into the phylogeny, metabolism, drug-resistance, stress adaptation, and virulence characteristics of this versatile pathogen, which constitutes an important first step in understanding the pathogenesis of E. tarda to facilitate construction of a practical effective vaccine used for combating fish edwardsiellosis

    Non Mycobacterial Virulence Genes in the Genome of the Emerging Pathogen Mycobacterium abscessus

    Get PDF
    Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a “mycobacterial” gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation) not present in the M. smegmatis genome. Many of the “non mycobacterial” factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients

    Effect of the COVID-19 pandemic on surgery for indeterminate thyroid nodules (THYCOVID): a retrospective, international, multicentre, cross-sectional study

    Get PDF
    Background Since its outbreak in early 2020, the COVID-19 pandemic has diverted resources from non-urgent and elective procedures, leading to diagnosis and treatment delays, with an increased number of neoplasms at advanced stages worldwide. The aims of this study were to quantify the reduction in surgical activity for indeterminate thyroid nodules during the COVID-19 pandemic; and to evaluate whether delays in surgery led to an increased occurrence of aggressive tumours.Methods In this retrospective, international, cross-sectional study, centres were invited to participate in June 22, 2022; each centre joining the study was asked to provide data from medical records on all surgical thyroidectomies consecutively performed from Jan 1, 2019, to Dec 31, 2021. Patients with indeterminate thyroid nodules were divided into three groups according to when they underwent surgery: from Jan 1, 2019, to Feb 29, 2020 (global prepandemic phase), from March 1, 2020, to May 31, 2021 (pandemic escalation phase), and from June 1 to Dec 31, 2021 (pandemic decrease phase). The main outcomes were, for each phase, the number of surgeries for indeterminate thyroid nodules, and in patients with a postoperative diagnosis of thyroid cancers, the occurrence of tumours larger than 10 mm, extrathyroidal extension, lymph node metastases, vascular invasion, distant metastases, and tumours at high risk of structural disease recurrence. Univariate analysis was used to compare the probability of aggressive thyroid features between the first and third study phases. The study was registered on ClinicalTrials.gov, NCT05178186.Findings Data from 157 centres (n=49 countries) on 87 467 patients who underwent surgery for benign and malignant thyroid disease were collected, of whom 22 974 patients (18 052 [78 center dot 6%] female patients and 4922 [21 center dot 4%] male patients) received surgery for indeterminate thyroid nodules. We observed a significant reduction in surgery for indeterminate thyroid nodules during the pandemic escalation phase (median monthly surgeries per centre, 1 center dot 4 [IQR 0 center dot 6-3 center dot 4]) compared with the prepandemic phase (2 center dot 0 [0 center dot 9-3 center dot 7]; p&lt;0 center dot 0001) and pandemic decrease phase (2 center dot 3 [1 center dot 0-5 center dot 0]; p&lt;0 center dot 0001). Compared with the prepandemic phase, in the pandemic decrease phase we observed an increased occurrence of thyroid tumours larger than 10 mm (2554 [69 center dot 0%] of 3704 vs 1515 [71 center dot 5%] of 2119; OR 1 center dot 1 [95% CI 1 center dot 0-1 center dot 3]; p=0 center dot 042), lymph node metastases (343 [9 center dot 3%] vs 264 [12 center dot 5%]; OR 1 center dot 4 [1 center dot 2-1 center dot 7]; p=0 center dot 0001), and tumours at high risk of structural disease recurrence (203 [5 center dot 7%] of 3584 vs 155 [7 center dot 7%] of 2006; OR 1 center dot 4 [1 center dot 1-1 center dot 7]; p=0 center dot 0039).Interpretation Our study suggests that the reduction in surgical activity for indeterminate thyroid nodules during the COVID-19 pandemic period could have led to an increased occurrence of aggressive thyroid tumours. However, other compelling hypotheses, including increased selection of patients with aggressive malignancies during this period, should be considered. We suggest that surgery for indeterminate thyroid nodules should no longer be postponed even in future instances of pandemic escalation.Funding None.Copyright (c) 2023 Published by Elsevier Ltd. All rights reserved
    corecore