61 research outputs found

    Design of a "Digital Atlas Vme Electronics" (DAVE) Module

    Get PDF
    ATLAS-SCT has developed a new ATLAS trigger card, 'Digital Atlas Vme Electronics' ("DAVE"). The unit is designed to provide a versatile array of interface and logic resources, including a large FPGA. It interfaces to both VME bus and USB hosts. DAVE aims to provide exact ATLAS CTP (ATLAS Central Trigger Processor) functionality, with random trigger, simple and complex deadtime, ECR (Event Counter Reset), BCR (Bunch Counter Reset) etc. being generated to give exactly the same conditions in standalone running as experienced in combined runs. DAVE provides additional hardware and a large amount of free firmware resource to allow users to add or change functionality. The combination of the large number of individually programmable inputs and outputs in various formats, with very large external RAM and other components all connected to the FPGA, also makes DAVE a powerful and versatile FPGA utility cardComment: 8 pages, 4 figures, TWEPP-2011; E-mail: [email protected]

    A Fixed-Frequency-Trigger Veto for the ATLAS SCT

    Get PDF
    Dangerous mechanical resonances exist which can lead to the breaking of bond wires if time varying currents are passed through them in a magnetic field. A fixed frequency trigger veto algorithm, designed to minimise the dangers of breaking wire bonds, and its implementation are described. Tests demonstrate the effectiveness of the solution and show minimal interference during normal triggering

    TIM (TTC Interface Module) for ATLAS SCT & PIXEL Read Out Electronics

    Get PDF
    The design, functionality, description of hardware and firmware and preliminary results of the ROD ( Read Out Driver) System Tests of the TIM (TTC Interface Module) are described.The TIM is the standard SCT and PIXEL detector interface module to the ATLAS Level-1 Trigger, using the LHC-standard TTC (Timing, Trigger and Control) system.TIM designed and built during 1999 and 2000 and two prototypes have been in use since then (Fig. 1). More modules are being built this year to allow for more tests of the ROD system at different sites around the world

    Development of a modular and scalable data acquisition system for calorimeters at a linear collider

    Get PDF
    A data acquisition (DAQ) system has been developed which will read out and control calorimeters serving as prototype systems for a future detector at an electron-positron linear collider. This is a modular, flexible and scalable DAQ system in which the hardware and signals are standards-based, using FPGAs and serial links. The idea of a backplaneless system was also pursued with a commercial development board housed in a PC and a chain of concentrator cards between it and the detector forming the basis of the system. As well as describing the concept and performance of the system, its merits and disadvantages are discussed.Comment: 12 pages, 6 figures, accepted by JINST. Version updated accounting for comments from journal referee

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    The Data Acquisition and Calibration System for the ATLAS Semiconductor Tracker

    Get PDF
    The SemiConductor Tracker (SCT) data acquisition (DAQ) system will calibrate, configure, and control the approximately six million front-end channels of the ATLAS silicon strip detector. It will provide a synchronized bunch-crossing clock to the front-end modules, communicate first-level triggers to the front-end chips, and transfer information about hit strips to the ATLAS high-level trigger system. The system has been used extensively for calibration and quality assurance during SCT barrel and endcap assembly and for performance confirmation tests after transport of the barrels and endcaps to CERN. Operating in data-taking mode, the DAQ has recorded nearly twenty million synchronously-triggered events during commissioning tests including almost a million cosmic ray triggered events. In this paper we describe the components of the data acquisition system, discuss its operation in calibration and data-taking modes and present some detector performance results from these tests

    The ATLAS SCT Optoelectronics and the Associated Electrical Services

    Get PDF
    The requirements for the optical links of the ATLAS SCT are described. From the individual detector modules to the first patch panel, the electrical services are integrated with the optical links to aid in mechanical design, construction and integration. The system architecture and critical elements of the system are described. The optical links for the ATLAS SCT have been assembled and mounted onto the carbon fibre support structures. The performance of the system as measured during QA is summarised and compared to the final performance obtained after mounting modules onto the support structures

    The optical links of the ATLAS SemiConductor tracker

    Get PDF
    Optical links are used for the readout of the 4088 silicon microstrip modules that make up the SemiConductor Tracker of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The optical link requirements are reviewed, with particular emphasis on the very demanding environment at the LHC. The on-detector components have to operate in high radiation levels for 10 years, with no maintenance, and there are very strict requirements on power consumption, material and space. A novel concept for the packaging of the on-detector optoelectronics has been developed to meet these requirements. The system architecture, including its redundancy features, is explained and the critical on-detector components are described. The results of the extensive Quality Assurance performed during all steps of the assembly are discussed

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore