509 research outputs found
Effect of Al doping on the optical phonon spectrum in Mg(1-x)Al(x)B(2)
Raman and infrared absorption spectra of Mg(1-x)Al(x)B(2) have been collected
for 0<x<0.5 in the spectral range of optical phonons. The x-dependence of the
peak frequency, the width and the intensity of the observed Raman lines has
been carefully analized. A peculiar x-dependence of the optical modes is
pointed out for two different Al doping ranges. In particular the onset of the
high-doping structural phase previously observed in diffraction measurements is
marked by the appearence of new spectral components at high frequencies. A
connection between the whole of our results and the observed suppression of
superconductivity in the high doping region is established
Tuning topological disorder in MgB
We carried out Raman measurements on neutron-irradiated and Al-doped MgB
samples. The irradiation-induced topological disorder causes an unexpected
appearance of high frequency spectral structures, similar to those observed in
lightly Al-doped samples. Our results show that disorder-induced violations of
the selection rules are responsible for the modification of the Raman spectrum
in both irradiated and Al-doped samples. Theoretical calculations of the phonon
density of states support this hypothesis, and demonstrate that the high
frequency structures arise mostly from contributions at of the
E phonon mode.Comment: 4 pages, 4 figure
Optical study of the vibrational and dielectric properties of BiMnO3
BiMnO3 (BMO), ferromagnetic (FM) below Tc = 100 K, was believed to be also
ferroelectric (FE) due to a non-centro-symmetric C2 structure, until
diffraction data indicated that its space group is the centro-symmetric C2/c.
Here we present infrared phonon spectra of BMO, taken on a mosaic of single
crystals, which are consistent with C2/c at any T > 10 K, as well as
room-temperature Raman data which strongly support this conclusion. We also
find that the infrared intensity of several phonons increases steadily for
decreasing T, causing the relative permittivity of BMO to vary from 18.5 at 300
K to 45 at 10 K. At variance with FE materials of displacive type, no
appreciable softening has been found in the infrared phonons. Both their
frequencies and intensities, moreover, appear insensitive to the FM transition
at Tc
High pressure Raman study of La1-xCaxMnO3-δ manganites
We report a high-pressure Raman study on two members of the La1-xCaxMnO3-δ manganite family (x = 0.20, δ = 0 and δ = 0.08). The results obtained for the δ = 0 sample show a different behavior in the low and high pressure regime which is ascribed to the onset of a new pressure-activated interaction previously invoked in other manganite compounds. The comparison of our results with literature data gives further support to the identification of the Jahn-Teller sensitive stretching mode and shows that pressure-induced octahedral symmetrization is more effective in systems exhibiting a lower metallic character. On the contrary the new interaction sets in at a pressure which decreases on increasing the metallic character of the system indicating an important role of the Mn-Mn hopping integral in its activatio
High pressure Raman study of LaCaMnO manganites
We report on a high-pressure Raman study on two members of the
LaCaMnO manganite family (, and
). The results obtained for the sample show a different
behavior in the low and high pressure regimes ascribed to the onset of a new
pressure-activated interaction previously invoked in other manganite compounds.
The comparison of our results with literature data gives further support to the
identification of the Jahn-Teller active stretching mode and shows that
pressure-induced octahedral symmetrization is more effective in systems
exhibiting a lower metallic character. On the contrary the new interaction sets
in at pressure which decreases on increasing the metallic character of the
system indicating a relevant role of the Mn-Mn hopping integral in its
activation.Comment: 4 pages, 3 figure, submitted to Phys. Rev.
Pressure-tuning of the electron-phonon coupling: the insulator to metal transition in manganites
A comprehensive understanding of the physical origin of the unique magnetic
and transport properties of A_(1-x)A'^xMnO_3 manganites (A = trivalent
rare-earth and A' = divalent alkali-earth metal) is still far from being
achieved. The complexity of these systems arises from the interplay among
several competing interactions of comparable strength. Recently the
electron-phonon coupling, triggered by a Jahn-Teller distortion of the MnO_6
octahedra, has been recognised to play an essential role in the insulator to
metal transition and in the closely related colossal magneto-resistance. The
pressure tuning of the octahedral distortion gives a unique possibility to
separate the basic interactions and, at least in principle, to follow the
progressive transformation of a manganite from an intermediate towards a weak
electron-phonon coupling regime. Using a diamond anvil cell, temperature and
pressure-dependent infrared absorption spectra of La_(0.75)Ca_(0.25)MnO_3 have
been collected and, from the spectral weight analysis, the pressure dependence
of the insulator to metal transition temperature T_IM has been determined for
the first time up to 11.2 GPa. The T_IM(P) curve we proposed to model the
present data revealed a universality character in accounting for the whole
class of intermediate coupling compounds. This property can be exploited to
distinguish the intermediate from the weak coupling compounds pointing out the
fundamental differences between the two coupling regimes.Comment: 8 pages, 4 figure
Electrodynamics near the Metal-to-Insulator Transition in V3O5
The electrodynamics near the metal-to-insulator transitions (MIT) induced, in
V3O5 single crystals, by both temperature (T) and pressure (P) has been studied
by infrared spectroscopy. The T- and P-dependence of the optical conductivity
may be explained within a polaronic scenario. The insulating phase at ambient T
and P corresponds to strongly localized small polarons. Meanwhile the T-induced
metallic phase at ambient pressure is related to a liquid of polarons showing
incoherent dc transport, in the P-induced metallic phase at room T strongly
localized polarons coexist with partially delocalized ones. The electronic
spectral weight is almost recovered, in both the T and P induced metallization
processes, on an energy scale of 1 eV, thus supporting the key-role of
electron-lattice interaction in the V3O5 metal-to-insulator transition.Comment: 7 pages, 5 figure
Coexistence of pressure-induced structural phases in bulk black phosphorus: a combined x-ray diffraction and Raman study up to 18 GPa
We report a study of the structural phase transitions induced by pressure in
bulk black phosphorus by using both synchrotron x-ray diffraction for pressures
up to 12.2 GPa and Raman spectroscopy up to 18.2 GPa. Very recently black
phosphorus attracted large attention because of the unique properties of
fewlayers samples (phosphorene), but some basic questions are still open in the
case of the bulk system. As concerning the presence of a Raman spectrum above
10 GPa, which should not be observed in an elemental simple cubic system, we
propose a new explanation by attributing a key role to the non-hydrostatic
conditions occurring in Raman experiments. Finally, a combined analysis of
Raman and XRD data allowed us to obtain quantitative information on presence
and extent of coexistences between different structural phases from ~5 up to
~15 GPa. This information can have an important role in theoretical studies on
pressure-induced structural and electronic phase transitions in black
phosphorus
A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C_22H_14
We present high-quality optical data and density functional perturbation
theory calculations for the vibrational spectrum of solid picene
(CH) under pressure up to 8 GPa. First-principles calculations
reproduce with a remarkable accuracy the pressure effects on both frequency and
intensities of the phonon peaks experimentally observed . Through a detailed
analysis of the phonon eigenvectors, We use the projection on molecular
eigenmodes to unambiguously fit the experimental spectra, resolving complicated
spectral structures, in a system with hundreds of phonon modes. With these
projections, we can also quantify the loss of molecular character under
pressure. Our results indicate that picene, despite a \sim 20 % compression of
the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon
modes displaying a smooth and uniform hardening with pressure. The Grueneisen
parameter of the 1380 cm^{-1} a_1 Raman peak () is much lower
than the effective value () due to K doping. This is an
indication that the phonon softening in K doped samples is mainly due to charge
transfer and electron-phonon coupling.Comment: Replaced with final version (PRB
- …