12,048 research outputs found
Analytic Criteria for Power Exhaust in Divertors due to Impurity Radiation
Present divertor concepts for next step experiments such ITER and TPX rely
upon impurity and hydrogen radiation to transfer the energy from the edge
plasma to the main chamber and divertor chamber walls. The efficiency of these
processes depends strongly on the heat flux, the impurity species, and the
connection length. Using a database for impurity radiation rates constructed
from the ADPAK code package, we have developed criteria for the required
impurity fraction, impurity species, connection length and electron temperature
and density at the mid-plane. Consistent with previous work, we find that the
impurity radiation from coronal equilibrium rates is, in general, not adequate
to exhaust the highest expected heating powers in present and future
experiments. As suggested by others, we examine the effects of enhancing the
radiation rates with charge exchange recombination and impurity recycling, and
develop criteria for the minimum neutral fraction and impurity recycling rate
that is required to exhaust a specified power. We also use this criteria to
find the optimum impurity for divertor power exhaust.Comment: Preprint for the 11th PSI meeting, Adobe pdf with 14 figures, 15
page
AI in space: Past, present, and possible futures
While artificial intelligence (AI) has become increasingly present in recent space applications, new missions being planned will require even more incorporation of AI techniques. In this paper, we survey some of the progress made to date in implementing such programs, some current directions and issues, and speculate about the future of AI in space scenarios. We also provide examples of how thinkers from the realm of science fiction have envisioned AI's role in various aspects of space exploration
Observations on North Dakota Sponges (Haplosclerina: Spongillidae) and Sisyrids (Neuroptera: Sisyridae)
Factors influencing occurrence, distribution, and ecology of sponges and sisyrids are discussed, with emphasis on northeastern North Dakota. New state records for North Dakota sponges, Eunapius Jraguis Leidy and Ephydatia fluviatilis L. and the sisyrids, Sisyra vicaria (Hagen) and Climacia areolaris (Hagen), and new county records for C. areolaris in northwestern Minnesota and Eunapius fragilis in northeastern North Dakota are reported. A rare association of the parasite, S. vicaria with the host, Ephydatia fluviatilis is also reported. Some physicochcmical relations of Eunapius fragilis found in the Forest River, North Dakota, are discussed
Thermal expansion of composites using Moire interferometry
An experimental technique for precise measurement of the thermal response of fiber-reinforced composite materials uses moire interferometry with fringe multiplication which yield a sensitivity of 833 nm (32.8 mu in.) per fringe. Results from the technique are compared with those obtained from electrical resistance strain gages, and also those predicted from classical lamination theory. Temperature dependent coefficients of thermal expansion for composite materials subjected to thermal cycling in the temperature range of 297 K (75 F) to 422 K (300 F) were determined for four laminate configurations (0, 90, 0/ + or - 45/90 sub s and 0/90/ + or - 45 sub s) of T300/5208 graphite epoxy, and ranged from -0.107 mu epsilon K/1 (-0.059 mu epsilon deg F/-) for the 0 laminate to 32.18 mu epsilon K/1 (17.88 mu epsilon F/1) for the 90 laminate. Moisture was found to greatly influence the thermal response of a quasi-isotropic laminate, resulting in hysteresis and residual compressive strain as the moisture content was reduced. Comparisons between moire and strain gage measurements were inconclusive with both techniques giving consistent but systematically different results. Differences of as much as 29% were observed
Radiation Rates for Low Z Impurities in Edge Plasmas
The role of impurity radiation in the reduction of heat loads on divertor
plates in present experiments such as DIII-D, JET, JT-60, ASDEX, and Alcator
C-Mod, and in planned experiments such as ITER and TPX places a new degree of
importance on the accuracy of impurity radiation emission rates for electron
temperatures below 250 eV for ITER and below 150 eV for present experiments. We
have calculated the radiated power loss using a collisional radiative model for
Be, B, C, Ne and Ar using a multiple configuration interaction model which
includes density dependent effects, as well as a very detailed treatment of the
energy levels and meta-stable levels. The "collisional radiative" effects are
very important for Be at temperatures below 10 eV. The same effects are present
for higher Z impurities, but not as strongly. For some of the lower Z elements,
the new rates are about a factor of two lower than those from a widely used,
simpler average-ion package (ADPAK) developed for high Z ions and for higher
temperatures. Following the approach of Lengyel for the case where electron
heat conduction is the dominant mechanism for heat transport along field lines,
our analysis indicates that significant enhancements of the radiation losses
above collisional radiative model rates due to such effects as rapid recycling
and charge exchange recombination will be necessary for impurity radiation to
reduce the peak heat loads on divertor plates for high heat flux experiments
such as ITER.Comment: Preprint for the 11th PSI meeting, gzipped postscript with 11
figures, 14 page
- …