14,273 research outputs found
Observations on North Dakota Sponges (Haplosclerina: Spongillidae) and Sisyrids (Neuroptera: Sisyridae)
Factors influencing occurrence, distribution, and ecology of sponges and sisyrids are discussed, with emphasis on northeastern North Dakota. New state records for North Dakota sponges, Eunapius Jraguis Leidy and Ephydatia fluviatilis L. and the sisyrids, Sisyra vicaria (Hagen) and Climacia areolaris (Hagen), and new county records for C. areolaris in northwestern Minnesota and Eunapius fragilis in northeastern North Dakota are reported. A rare association of the parasite, S. vicaria with the host, Ephydatia fluviatilis is also reported. Some physicochcmical relations of Eunapius fragilis found in the Forest River, North Dakota, are discussed
Analytic Criteria for Power Exhaust in Divertors due to Impurity Radiation
Present divertor concepts for next step experiments such ITER and TPX rely
upon impurity and hydrogen radiation to transfer the energy from the edge
plasma to the main chamber and divertor chamber walls. The efficiency of these
processes depends strongly on the heat flux, the impurity species, and the
connection length. Using a database for impurity radiation rates constructed
from the ADPAK code package, we have developed criteria for the required
impurity fraction, impurity species, connection length and electron temperature
and density at the mid-plane. Consistent with previous work, we find that the
impurity radiation from coronal equilibrium rates is, in general, not adequate
to exhaust the highest expected heating powers in present and future
experiments. As suggested by others, we examine the effects of enhancing the
radiation rates with charge exchange recombination and impurity recycling, and
develop criteria for the minimum neutral fraction and impurity recycling rate
that is required to exhaust a specified power. We also use this criteria to
find the optimum impurity for divertor power exhaust.Comment: Preprint for the 11th PSI meeting, Adobe pdf with 14 figures, 15
page
Free edge strain concentrations in real composite laminates: Experimental-theoretical correlation
The magnitude of the maximum shear strain at the free edge of axially loaded theta (2)/-theta(2)(s) and (+ or - theta(2) (s) composite laminates was investigated experimentally and numerically to ascertain the actual value of strain concentration in resin matrix laminates and to determine the accuracy of finite element results. Experimental results using moire interferometry show large, but finite, shear strain concentrations at the free edge of graphite-epoxy and graphite-polyimide laminates. Comparison of the experimental results with those obtained using several different finite element representations showed that a four node isoparametric finite element provided the best and most trouble free numerical results. The results indicate that the ratio of maxium shear strain at the free edge to applied axial strain varies with fiber orientation and does not exceed nine for the most critical angle which is 15 deg
A New Pathway for the Preparation of Highly Qualified Teachers: The Master of Arts in Teaching (MAT)
This article reports on the development and initial implementation of a Master of Arts in Teaching (MAT) degree, an accelerated graduate program that encourages and scaffolds individuals with existing disciplinary expertise in entering the teaching profession. First, the context for developing the program is outlined. Next, the unique structure of the 15-month program, which consists of three blocks, is described. Expectations about students are then shared, quality control features of the program are highlighted, and the lessons we learned about program development and implementation are detailed. Finally, thoughts about the future of this program and others of its type are shared based upon our experience
ProteoClade: A taxonomic toolkit for multi-species and metaproteomic analysis
We present ProteoClade, a Python toolkit that performs taxa-specific peptide assignment, protein inference, and quantitation for multi-species proteomics experiments. ProteoClade scales to hundreds of millions of protein sequences, requires minimal computational resources, and is open source, multi-platform, and accessible to non-programmers. We demonstrate its utility for processing quantitative proteomic data derived from patient-derived xenografts and its speed and scalability enable a novel de novo proteomic workflow for complex microbiota samples
AI in space: Past, present, and possible futures
While artificial intelligence (AI) has become increasingly present in recent space applications, new missions being planned will require even more incorporation of AI techniques. In this paper, we survey some of the progress made to date in implementing such programs, some current directions and issues, and speculate about the future of AI in space scenarios. We also provide examples of how thinkers from the realm of science fiction have envisioned AI's role in various aspects of space exploration
Thermal expansion of composites using Moire interferometry
An experimental technique for precise measurement of the thermal response of fiber-reinforced composite materials uses moire interferometry with fringe multiplication which yield a sensitivity of 833 nm (32.8 mu in.) per fringe. Results from the technique are compared with those obtained from electrical resistance strain gages, and also those predicted from classical lamination theory. Temperature dependent coefficients of thermal expansion for composite materials subjected to thermal cycling in the temperature range of 297 K (75 F) to 422 K (300 F) were determined for four laminate configurations (0, 90, 0/ + or - 45/90 sub s and 0/90/ + or - 45 sub s) of T300/5208 graphite epoxy, and ranged from -0.107 mu epsilon K/1 (-0.059 mu epsilon deg F/-) for the 0 laminate to 32.18 mu epsilon K/1 (17.88 mu epsilon F/1) for the 90 laminate. Moisture was found to greatly influence the thermal response of a quasi-isotropic laminate, resulting in hysteresis and residual compressive strain as the moisture content was reduced. Comparisons between moire and strain gage measurements were inconclusive with both techniques giving consistent but systematically different results. Differences of as much as 29% were observed
Semirelativistic stability of N-boson systems bound by 1/r pair potentials
We analyze a system of self-gravitating identical bosons by means of a
semirelativistic Hamiltonian comprising the relativistic kinetic energies of
the involved particles and added (instantaneous) Newtonian gravitational pair
potentials. With the help of an improved lower bound to the bottom of the
spectrum of this Hamiltonian, we are able to enlarge the known region for
relativistic stability for such boson systems against gravitational collapse
and to sharpen the predictions for their maximum stable mass.Comment: 11 pages, considerably enlarged introduction and motivation,
remainder of the paper unchange
- …
