6 research outputs found

    Die Wirkung physikalischen Plasmas auf die Hämostase und Physiologie des Thrombozyten in humanem Vollblut

    No full text
    Im Jahr 2020 wurden die 50-häufigsten Operationen insgesamt 15.823.464-mal durchgeführt und das entspricht rechnerisch ca. einer Operation auf fünf Einwohnern in Deutschland. Bei jeder dieser Operationen ist die Blutungsstillung eine therapeutische Notwendigkeit. Intraoperativ wird dafür häufig die Elektrokauterisierung verwendet, die aber mit einem Risiko der Nachblutung, Perforation und Gewebezerstörung einhergeht. Eine neue Variante zum Blutungsmanagement kann kaltes physikalisches Plasma (Gas-Plasma) darstellen. Dies ist ein energiereiches Gas, welches durch verschiedene Mechanismen, wie Temperatur, angeregte chemische Spezies, UV- und Wärmestrahlung, wechselwirkt. Es wurden in-vitro Untersuchungen an menschlichem Blut durchgeführt, um einen Wirkungsmechanismus von Gas-Plasma zu demaskieren. In der vorliegenden Arbeit wurde festgestellt, dass ein Großteil der Thrombozytenaktivierung durch Gas-Plasma (ca. 55 %) auf eine Lyse der Erythrozyten zurückzuführen ist. Die Hämolyse wurde spektroskopisch nachgewiesen und in Abhängigkeit von der Behandlungszeit quantifiziert. Die Thrombozyten reagieren mit einer PI3K/Akt/p38-vermittelten Signalkaskade, welche schließlich zu deren Aktivierung führt. Bei der Signaltransduktion wurde eine Bedeutung von intrazellulären ROS und eine Hyperpolarisation der Mitochondrien der Thrombozyten festgestellt. Die Signaltransduktion kann über den Einfluss von ADP auf den P2Y12-Rezeptor erklärt werden. Es wurde ein auf künstliche Intelligenz basierender Auswertungsalgorithmus angewandt, welcher den Nachweis von vermehrten Thrombozytenaggregaten nach Applikation von Gas-Plasma erbrachte. Gas-Plasma wirkt über eine Vielzahl an reaktiven Spezies und ein alleiniger Einfluss von Wasserstoffperoxid, hypochloriger Säure und Superoxidanionen scheint unwahrscheinlich. Die Erklärung der Hämolyse wurde auf Singulett-Sauerstoff und Ozon zurückgeführt. Daneben kann NO direkt auf Thrombozyten wirken. Es wurde die erste Messung der oberflächlichen Temperatur einer Flüssigkeit bei Behandlung mit Gas-Plasma vollzogen. Dabei wurde eine geringe Änderung der Temperatur festgestellt. Weiterhin wurde der Einfluss der Evaporation als gering gewertet. Da die Anwendung von Gas-Plasma körpereigene Gerinnungsmechanismen beschleunigt, desinfizierend wirkt und nebenwirkungsarm ist, besitzt Gas-Plasma großes klinisches Potential im Bereich der chirurgischen Blutgerinnung.In 2020, the 50 most common surgeries were performed a total of 15,823,464 times, which corresponds to approximately one operation for every five inhabitants in Germany. In each of these operations, hemostasis is a therapeutic requirement. Intraoperatively, electrocauterization is often used for this purpose, but this is associated with a risk of secondary bleeding, perforation, and tissue destruction. Cold physical plasma (gas plasma) can represent a new variant for hemorrhage management. This is an energetic gas that interacts through various mechanisms such as temperature, reactive chemical species, UV, and thermal radiation. In vitro studies were performed on human whole blood to identify a mechanism of action of gas plasma. In the present study, it was found that the majority of platelet activation by gas plasma (approx. 55 %) is due to hemolysis. The hemolysis was detected spectroscopically and quantified for different treatment times. The platelets respond with a PI3K/Akt/p38-mediated signaling cascade, which ultimately leads to their activation. Significance of intracellular ROS and hyperpolarization of platelet mitochondria was found during signal transduction. The signaling cascade can be explained by the influence of ADP on the P2Y12 receptor. An evaluation algorithm based on artificial intelligence was used, which demonstrated increased platelet aggregates after application of gas plasma. Gas plasma acts via a variety of reactive species and long-lived species such as hydrogen peroxide, hypochlorous acid and superoxide anions appear to contribute only slightly to the gas plasma effect. The explanation of hemolysis has been attributed to singlet oxygen and ozone. In addition, NO can act directly on platelets. The first measurement of the surface temperature of a liquid during treatment with gas plasma was carried out. A minor change in temperature was detected. Evaporation during gas plasma treatment was quantified. As the use of gas plasma accelerates the body's own coagulation mechanisms, has a disinfectant property and only few side effects are known, gas plasma has a high clinical potential in the field of surgical blood coagulation

    Medical Gas Plasma—A Potent ROS-Generating Technology for Managing Intraoperative Bleeding Complications

    Get PDF
    Cold medical gas plasmas are under pre-clinical investigation concerning their hemostatic activity and could be applied for intra-operative bleeding control in the future. The technological leap innovation was their generation at body temperature, thereby causing no thermal harm to the tissue and ensuring tissue integrity. This directly contrasts with current techniques such as electrocautery, which induces hemostasis by carbonizing the tissue using a heated electrode. However, the necrotized tissue is prone to fall, raising the risk of post-operative complications such as secondary bleedings or infection. In recent years, various studies have reported on the ability of medical gas plasmas to induce blood coagulation, including several suggestions concerning their mode of action. As non-invasive and gentle hemostatic agents, medical gas plasmas could be particularly eligible for vulnerable tissues, e.g., colorectal surgery and neurosurgery. Further, their usage could be beneficial regarding the prevention of post-operative bleedings due to the absence or sloughing of eschar. However, no clinical trials or individual healing attempts for medical gas plasmas have been reported to pave the way for clinical approvement until now, despite promising results in experimental animal models. In this light, the present mini-review aims to emphasize the potential of medical gas plasmas to serve as a hemostatic agent in clinical procedures. Providing a detailed overview of the current state of knowledge, feasible application fields are discussed, and possible obstacles are addressed

    Assessment of Retinopathy of Prematurity Regression and Reactivation Using an Artificial Intelligence–Based Vascular Severity Score

    No full text
    Importance: One of the biggest challenges when using anti–vascular endothelial growth factor (VEGF) agents to treat retinopathy of prematurity (ROP) is the need to perform long-term follow-up examinations to identify eyes at risk of ROP reactivation requiring retreatment. Objective: To evaluate whether an artificial intelligence (AI)–based vascular severity score (VSS) can be used to analyze ROP regression and reactivation after anti-VEGF treatment and potentially identify eyes at risk of ROP reactivation requiring retreatment. Design, Setting, and Participants: This prognostic study was a secondary analysis of posterior pole fundus images collected during the multicenter, double-blind, investigator-initiated Comparing Alternative Ranibizumab Dosages for Safety and Efficacy in Retinopathy of Prematurity (CARE-ROP) randomized clinical trial, which compared 2 different doses of ranibizumab (0.12 mg vs 0.20 mg) for the treatment of ROP. The CARE-ROP trial screened and enrolled infants between September 5, 2014, and July 14, 2016. A total of 1046 wide-angle fundus images obtained from 19 infants at predefined study time points were analyzed. The analyses of VSS were performed between January 20, 2021, and November 18, 2022. Interventions: An AI-based algorithm assigned a VSS between 1 (normal) and 9 (most severe) to fundus images. Main Outcomes and Measures: Analysis of VSS in infants with ROP over time and VSS comparisons between the 2 treatment groups (0.12 mg vs 0.20 mg of ranibizumab) and between infants who did and did not receive retreatment for ROP reactivation. Results: Among 19 infants with ROP in the CARE-ROP randomized clinical trial, the median (range) postmenstrual age at first treatment was 36.4 (34.7-39.7) weeks; 10 infants (52.6%) were male, and 18 (94.7%) were White. The mean (SD) VSS was 6.7 (1.9) at baseline and significantly decreased to 2.7 (1.9) at week 1 (P < .001) and 2.9 (1.3) at week 4 (P < .001). The mean (SD) VSS of infants with ROP reactivation requiring retreatment was 6.5 (1.9) at the time of retreatment, which was significantly higher than the VSS at week 4 (P < .001). No significant difference was found in VSS between the 2 treatment groups, but the change in VSS between baseline and week 1 was higher for infants who later required retreatment (mean [SD], 7.8 [1.3] at baseline vs 1.7 [0.7] at week 1) vs infants who did not (mean [SD], 6.4 [1.9] at baseline vs 3.0 [2.0] at week 1). In eyes requiring retreatment, higher baseline VSS was correlated with earlier time of retreatment (Pearson r = −0.9997; P < .001). Conclusions and Relevance: In this study, VSS decreased after ranibizumab treatment, consistent with clinical disease regression. In cases of ROP reactivation requiring retreatment, VSS increased again to values comparable with baseline values. In addition, a greater change in VSS during the first week after initial treatment was found to be associated with a higher risk of later ROP reactivation, and high baseline VSS was correlated with earlier retreatment. These findings may have implications for monitoring ROP regression and reactivation after anti-VEGF treatment
    corecore