1,253 research outputs found

    Boreal Forests and the Global Carbon Cycle

    Get PDF

    Tracing the development of dust around evolved stars: The case of 47 Tuc

    Get PDF
    We observed mid-infrared (7.5-22 mum) spectra of AGB stars in the globular cluster 47 Tuc with the Spitzer telescope and find significant dust features of various types. Comparison of the characteristics of the dust spectra with the location of the stars in a logP-K-diagram shows that dust mineralogy and position on the AGB are related. A 13 mum feature is seen in spectra of low luminosity AGB stars. More luminous AGB stars show a broad feature at 11.5 mum. The spectra of the most luminous stars are dominated by the amorphous silicate bending vibration centered at 9.7 mum. For 47 Tuc AGB stars, we conclude that early on the AGB dust consisting primarily of Mg-, Al- and Fe oxides is formed. With further AGB evolution amorphous silicates become the dominant species.Comment: 2 figures, accepted for publication in ApJ Letter

    Time-oscillating Lyapunov modes and auto-correlation functions for quasi-one-dimensional systems

    Full text link
    The time-dependent structure of the Lyapunov vectors corresponding to the steps of Lyapunov spectra and their basis set representation are discussed for a quasi-one-dimensional many-hard-disk systems. Time-oscillating behavior is observed in two types of Lyapunov modes, one associated with the time translational invariance and another with the spatial translational invariance, and their phase relation is specified. It is shown that the longest period of the Lyapunov modes is twice as long as the period of the longitudinal momentum auto-correlation function. A simple explanation for this relation is proposed. This result gives the first quantitative connection between the Lyapunov modes and an experimentally accessible quantity.Comment: 4 pages, 3 figure

    Remarks on NonHamiltonian Statistical Mechanics: Lyapunov Exponents and Phase-Space Dimensionality Loss

    Full text link
    The dissipation associated with nonequilibrium flow processes is reflected by the formation of strange attractor distributions in phase space. The information dimension of these attractors is less than that of the equilibrium phase space, corresponding to the extreme rarity of nonequilibrium states. Here we take advantage of a simple model for heat conduction to demonstrate that the nonequilibrium dimensionality loss can definitely exceed the number of phase-space dimensions required to thermostat an otherwise Hamiltonian system.Comment: 5 pages, 2 figures, minor typos correcte

    Lyapunov instability of fluids composed of rigid diatomic molecules

    Full text link
    We study the Lyapunov instability of a two-dimensional fluid composed of rigid diatomic molecules, with two interaction sites each, and interacting with a WCA site-site potential. We compute full spectra of Lyapunov exponents for such a molecular system. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Quam. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Qualitative different degrees of freedom -- such as rotation and translation -- affect the Lyapunov spectrum differently. We study this phenomenon by systematically varying the molecular shape and the density. We define and evaluate ``rotation numbers'' measuring the time averaged modulus of the angular velocities for vectors connecting perturbed satellite trajectories with an unperturbed reference trajectory in phase space. For reasons of comparison, various time correlation functions for translation and rotation are computed. The relative dynamics of perturbed trajectories is also studied in certain subspaces of the phase space associated with center-of-mass and orientational molecular motion.Comment: RevTeX 14 pages, 7 PostScript figures. Accepted for publication in Phys. Rev.

    Sulfur deposition onto European forests: throughfall data and model estimates

    Get PDF
    The assessment of atmospheric sulfur deposition to forest is difficult because of its complex aerodynamic structure. Therefore, atmospheric deposition of sulfur to forest is often estimated by means of measuring throughfall fluxes onto the forest floor. In this paper, reported measurements of throughfall fluxes in European forests are analyzed. These fluxes are compared to deposition to bulk collectors located in nearby open land, to get an idea of the filtering efficiency of forests. In addition, fluxes are compared with deposition estimates from a long‐range transport model of air pollutants, linked to an emission generation model. According to reported measurements from 52 European conifer stands, we found that the sulfur flux was 3.8 ± 2.3 times greater onto the forest floor than onto precipitation collectors. In a similar data set of 13 deciduous stands this ratio was 2.3 ± 0.9. The ratio of throughfall flux to model estimate was 1.8 ± 0.9 in coniferous stands and 0.9 ± 0.3 in deciduous stands. For sites that are located in moderately to highly sulfur polluted areas, it is assumed that throughfall fluxes give a good estimation of the atmospheric sulfur deposition. We conclude that (1) sulfur deposition to forests is 1.5 to 6 times higher than deposition to smooth receptor surfaces due to an efficient filtering by the forest canopy, (2) average annual sulfur deposition at a given location is 50–100% greater on conifers than on deciduous trees, (3) the existing European scale model that links sulfur deposition to the pollution generation processes is quite accurate as far as deciduous forests are concerned, and (4) the model underestimates deposition to coniferous forest

    Hopping dynamics for localized Lyapunov vectors in many-hard-disk systems

    Full text link
    The dynamics of the localized region of the Lyapunov vector for the largest Lyapunov exponent is discussed in quasi-one-dimensional hard-disk systems at low density. We introduce a hopping rate to quantitatively describe the movement of the localized region of this Lyapunov vector, and show that it is a decreasing function of hopping distance, implying spatial correlation of the localized regions. This behavior is explained quantitatively by a brick accumulation model derived from hard-disk dynamics in the low density limit, in which hopping of the localized Lyapunov vector is represented as the movement of the highest brick position. We also give an analytical expression for the hopping rate, which is obtained us a sum of probability distributions for brick height configurations between two separated highest brick sites. The results of these simple models are in good agreement with the simulation results for hard-disk systems.Comment: 28 pages, 13 figure

    Evaluation and Calibration of SAPS 3 in Patients with COVID-19 Admitted to Intensive Care Units

    Get PDF
    info:eu-repo/semantics/publishedVersio
    corecore