829 research outputs found

    Remarks on NonHamiltonian Statistical Mechanics: Lyapunov Exponents and Phase-Space Dimensionality Loss

    Full text link
    The dissipation associated with nonequilibrium flow processes is reflected by the formation of strange attractor distributions in phase space. The information dimension of these attractors is less than that of the equilibrium phase space, corresponding to the extreme rarity of nonequilibrium states. Here we take advantage of a simple model for heat conduction to demonstrate that the nonequilibrium dimensionality loss can definitely exceed the number of phase-space dimensions required to thermostat an otherwise Hamiltonian system.Comment: 5 pages, 2 figures, minor typos correcte

    Harmonic oscillators in the Nos\'e - Hoover thermostat

    Full text link
    We study the dynamics of an ensemble of non-interacting harmonic oscillators in a nonlinear dissipative environment described by the Nos\'e - Hoover model. Using numerical simulation we find the histogram for total energy, which agrees with the analysis of the Nos\'e - Hoover equations effected with the method of averaging. The histogram does not correspond to Gibbs' canonical distribution. We have found oscillations at frequency proportional to α/m\sqrt{\alpha/m}, α\alpha the dissipative parameter of thermostat and mm the characteristic mass of particle, about the stationary state corresponding to equilibrium. The oscillations could have an important bearing upon the analysis of simulating molecular dynamics in the Nos\'e - Hoover thermostat.Comment: 7 pages, 4 figure

    Soft disks in a narrow channel

    Full text link
    The pressure components of "soft" disks in a two dimensional narrow channel are analyzed in the dilute gas regime using the Mayer cluster expansion and molecular dynamics. Channels with either periodic or reflecting boundaries are considered. It is found that when the two-body potential, u(r), is singular at some distance r_0, the dependence of the pressure components on the channel width exhibits a singularity at one or more channel widths which are simply related to r_0. In channels with periodic boundary conditions and for potentials which are discontinuous at r_0, the transverse and longitudinal pressure components exhibit a 1/2 and 3/2 singularity, respectively. Continuous potentials with a power law singularity result in weaker singularities of the pressure components. In channels with reflecting boundary conditions the singularities are found to be weaker than those corresponding to periodic boundaries

    Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems

    Full text link
    A two dimensional self-gravitating Hamiltonian model made by NN fully-coupled classical particles exhibits a transition from a collapsing phase (CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical point of view, the two phases are characterized by two distinct single-particle motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a time τ\tau that increases linearly with NN. Therefore, the finite particle number acts like a white noise source for the system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review

    Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering

    Full text link
    In recent work a deterministic and time-reversible boundary thermostat called thermostating by deterministic scattering has been introduced for the periodic Lorentz gas [Phys. Rev. Lett. {\bf 84}, 4268 (2000)]. Here we assess the nonlinear properties of this new dynamical system by numerically calculating its Lyapunov exponents. Based on a revised method for computing Lyapunov exponents, which employs periodic orthonormalization with a constraint, we present results for the Lyapunov exponents and related quantities in equilibrium and nonequilibrium. Finally, we check whether we obtain the same relations between quantities characterizing the microscopic chaotic dynamics and quantities characterizing macroscopic transport as obtained for conventional deterministic and time-reversible bulk thermostats.Comment: 18 pages (revtex), 7 figures (postscript

    The modalities of Iranian soft power: from cultural diplomacy to soft war

    No full text
    Through exploring Iran's public diplomacy at the international level, this article demonstrates how the Islamic Republic's motives should not only be contextualised within the oft-sensationalised, material or ‘hard’ aspects of its foreign policy, but also within the desire to project its cultural reach through ‘softer’ means. Iran's utilisation of culturally defined foreign policy objectives and actions demonstrates its understanding of soft power's potentialities. This article explores the ways in which Iran's public diplomacy is used to promote its soft power and craft its, at times, shifting image on the world stage

    Effect of angular momentum on equilibrium properties of a self-gravitating system

    Full text link
    The microcanonical properties of a two dimensional system of N classical particles interacting via a smoothed Newtonian potential as a function of the total energy E and the total angular momentum L are discussed. In order to estimate suitable observables a numerical method based on an importance sampling algorithm is presented. The entropy surface shows a negative specific heat region at fixed L for all L. Observables probing the average mass distribution are used to understand the link between thermostatistical properties and the spatial distribution of particles. In order to define a phase in non-extensive system we introduce a more general observable than the one proposed by Gross and Votyakov [Eur. Phys. J. B:15, 115 (2000)]: the sign of the largest eigenvalue of the entropy surface curvature. At large E the gravitational system is in a homogeneous gas phase. At low E there are several collapse phases; at L=0 there is a single cluster phase and for L>0 there are several phases with 2 clusters. All these pure phases are separated by first order phase transition regions. The signal of critical behaviour emerges at different points of the parameter space (E,L). We also discuss the ensemble introduced in a recent pre-print by Klinko & Miller; this ensemble is the canonical analogue of the one at constant energy and constant angular momentum. We show that a huge loss of informations appears if we treat the system as a function of intensive parameters: besides the known non-equivalence at first order phase transitions, there exit in the microcanonical ensemble some values of the temperature and the angular velocity for which the corresponding canonical ensemble does not exist, i.e. the partition sum diverges.Comment: 17 pages, 11 figures, submitted to Phys. Rev.

    A vortex description of the first-order phase transition in type-I superconductors

    Full text link
    Using both analytical arguments and detailed numerical evidence we show that the first order transition in the type-I 2D Abelian Higgs model can be understood in terms of the statistical mechanics of vortices, which behave in this regime as an ensemble of attractive particles. The well-known instabilities of such ensembles are shown to be connected to the process of phase nucleation. By characterizing the equation of state for the vortex ensemble we show that the temperature for the onset of a clustering instability is in qualitative agreement with the critical temperature. Below this point the vortex ensemble collapses to a single cluster, which is a non-extensive phase, and disappears in the absence of net topological charge. The vortex description provides a detailed mechanism for the first order transition, which applies at arbitrarily weak type-I and is gauge invariant unlike the usual field-theoretic considerations, which rely on asymptotically large gauge coupling.Comment: 4 pages, 6 figures, uses RevTex. Additional references added, some small corrections to the tex
    • 

    corecore