31 research outputs found

    Monolithic integration of patterned BaTiO3 thin films on Ge wafers

    Get PDF
    Titanates exhibit electronic properties highly desirable for field effect transistors such as very high permittivity and ferroelectricity. However, the difficulty of chemically etching titanates hinders their commercial use in device manufacturing. Here, the authors report the selective area in finestra growth of highly crystalline BaTiO3 (BTO) within photolithographically defined openings of a sacrificial SiO2 layer on a Ge (001) wafer by molecular beam epitaxy. After the BaTiO3 deposition, the sacrificial SiO2 can be etched away, revealing isolated nanoscale gate stacks circumventing the need to etch the titanate thin film. Reflection high-energy electron diffraction in conjunction with scanning electron microscopy is carried out to confirm the crystallinity of the samples. X-ray diffraction is performed to determine the out-of-plane lattice constant and crystal quality of the BTO film. Electrical measurements are performed on electrically isolated Pt/BaTiO3/SrTiO3/Ge capacitor devices

    Quantum confinement in oxide heterostructures: room-temperature intersubband absorption in SrTiO3/LaAlO3 multiple quantum wells

    Get PDF
    The Si-compatibility of perovskite heterostructures offers the intriguing possibility of producing oxide-based quantum well (QW) optoelectronic devices for use in Si photonics. While the SrTiO3/LaAlO3 (STO/LAO) system has been studied extensively in the hopes of using the interfacial 2-dimensional electron gas in Si-integrated electronics, the potential to exploit its giant 2.4 eV conduction band offset in oxide-based QW optoelectronic devices has so far been largely ignored. Here, we demonstrate room-temperature intersubband absorption in STO/LAO QW heterostructures at energies on the order of hundreds of meV, including at energies approaching the critically important telecom wavelength of 1.55 渭m. We demonstrate the ability to control the absorption energy by changing the width of the STO well layers by a single unit cell and present theory showing good agreement with experiment. A detailed structural and chemical analysis of the samples via scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) is presented. This work represents an important proof-of-concept for the use of transition metal oxide QWs in Si-compatible optoelectronic devices

    Piezoelectric modulation of nonlinear optical response in BaTiO3 thin film

    Get PDF
    We study the nonlinear optical response in a strained thin film ferroelectric oxide BaTiO3 using piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (001) as a variable strain substrate and La-doped SrTiO3 as a conductive buffer layer. The rotation-anisotropic second harmonic intensity profile shows hysteretic modulation corresponding to the strain variation from the inverse piezoelectric response of the substrate. An enhancement of 15% is observed at 1.2鈥塳V/cm, while a control sample shows negligible change as a function of piezovoltage. Reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, and high-resolution scanning transmission electron microscopy reveal the epitaxial interface. X-ray diffraction and piezoresponse force microscopy confirm tetragonal distortion and ferroelectricity of the BaTiO3 overlayer. Our results suggest a promising route to enhance the performance of nonlinear optical oxides for the development of future nano-opto-mechanical devices

    Integration of functional oxides with semiconductors

    No full text
    This unique book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices, and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges, and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. This book also: 路聽聽聽聽聽聽聽聽 Discusses why semiconductor substrates are an excellent integration platform for making hybrid logic/sensor devices 路聽聽聽聽聽聽聽聽 Provides a brief introduction to the methods accessible to non-experts, before going into details of interest to the experts 路聽聽聽聽聽聽聽聽 Includes a detailed glossary that explains the specialized terminology and provides insight into the terminology and how it鈥檚 use

    Integration of Functional Oxides with Semiconductors

    No full text
    X, 278 p. 146 illus., 113 illus. in color.online
    corecore