58 research outputs found

    Der innovative Fehler im Kristall. Design keramischer Piezo- und Ferroelektrika durch Versetzungen

    Get PDF
    Versetzungen sind nicht nur fĂŒr die plastische Verformung in Metallen zustĂ€ndig. Sie können auch fĂŒr das Einstellen hervorragender, temperaturstabiler Eigenschaftsprofile in Keramiken eingesetzt werden. Dies gilt besonders fĂŒr Elektrokeramiken, deren elektrische sowie piezo- und ferroelektrische Eigenschaften technisch bedeutend sind. Das VerstĂ€ndnis des Einflusses von Versetzungen auf den elektrischen Ladungstransport wie auch auf das ferroelektrische Verhalten entwickelt sich rasant. Im wissenschaftlichen Fokus steht die Suche nach einem Ersatzmaterial fĂŒr den Klassenprimus Bleizirkonattitanat (PZT), das ohne Blei auskommt und nachhaltig ist. Andere mögliche Anwendungen des EinprĂ€gens von Versetzungen werden derzeit fĂŒr die Zukunft diskutiert

    Low-profile self-sealing sample transfer flexure box

    Get PDF
    A flexural bearing mechanism has enabled the development of a self-sealing box for protecting air sensitive samples during transfer between glove boxes, micro-machining equipment, and microscopy equipment. The simplicity and self-actuating feature of this design makes it applicable to many devices that operate under vacuum conditions. The models used to design the flexural mechanism are presented in detail. The device has been tested in a Zeiss Merlin GEMINI II scanning electron microscope with Li₃PS₄ samples, showing effective isolation from air and corrosion prevention

    Dislocations in ceramic electrolytes for solid-state Li batteries

    Get PDF
    High power solid-state Li batteries (SSLB) are hindered by the formation of dendrite-like structures at high current rates. Hence, new design principles are needed to overcome this limitation. By introducing dislocations, we aim to tailor mechanical properties in order to withstand the mechanical stress leading to Li penetration and resulting in a short circuit by a crack-opening mechanism. Such defect engineering, furthermore, appears to enable whisker-like Li metal electrodes for high-rate Li plating. To reach these goals, the challenge of introducing dislocations into ceramic electrolytes needs to be addressed which requires to establish fundamental understanding of the mechanics of dislocations in the particular ceramics. Here we evaluate uniaxial deformation at elevated temperatures as one possible approach to introduce dislocations. By using hot-pressed pellets and single crystals grown by Czochralski method of Li6.4La3Zr1.4Ta0.6O12 garnets as a model system the plastic deformation by more than 10% is demonstrated. While conclusions on the predominating deformation mechanism remain challenging, analysis of activation energy, activation volume, diffusion creep, and the defect structure potentially point to a deformation mechanism involving dislocations. These parameters allow identification of a process window and are a key step on the road of making dislocations available as a design element for SSLB

    Enhanced Photoconductivity at Dislocations in SrTiO₃

    Get PDF
    Dislocations are 1D crystallographic line defects and are usually seen as detrimental to the functional properties of classic semiconductors. It is shown here that this not necessarily accounts for oxide semiconductors in which dislocations are capable of boosting the photoconductivity. Strontium titanate single crystals are controllably deformed to generate a high density of ordered dislocations of two slip systems possessing different mesoscopic arrangements. For both slip systems, nanoscale conductive atomic force microscope investigations reveal a strong enhancement of the photoconductivity around the dislocation cores. Macroscopic in-plane measurements indicate that the two dislocation systems result in different global photoconductivity behavior despite the similar local enhancement. Depending on the arrangement, the global photoresponse can be increased by orders of magnitude. Additionally, indications for a bulk photovoltaic effect enabled by dislocation-surrounding strain fields are observed for the first time. This proves that dislocations in oxide semiconductors can be of large interest for tailoring photoelectric functionalities. Direct evidence that electronic transport is confined to the dislocation core points to a new emerging research field

    Influence of dislocations on thermal conductivity of strontium titanate

    Get PDF
    Recently, several creative processing techniques yielded thermoelectrics with reduced thermal conductivity and, thereby, an enhanced figure or merit. These were based on engineered complex microstructures with attendant dislocation structures. In this study, we implement highly controlled mesoscopic dislocation structures into the model thermoelectric SrTiO₃ in order to quantify phonon scattering at dislocations. Both single crystals and polycrystalline material have been furnished with enhanced dislocation densities increased by a factor of 150–300 by plastic deformation. Thermal conductivity was measured using laser flash analysis between room temperature and 325 °C. Etch pit techniques and ultra-high voltage electron microscopy afford quantification of dislocation density. Experimental results were compared to predictions by the Debye-Callaway model. The latter revealed that dislocation densities of 10Âč⁔ m⁻ÂČ would be necessary for the reduction of thermal conductivity of SrTiO₃ in the investigated temperature range, which could not be realized using the plastic deformation mechanism applied

    High-temperature plastic deformation of ⟹110⟩-oriented BaTiO₃ single crystals

    Get PDF
    BaTiO₃ single crystals were deformed in compression along the ⟹110⟩ crystal axis to study the plastic deformability and dislocation structures at high temperatures under different loading conditions. The yield strength is determined from stress–strain curves under strain rate control, load control, strain rate cycling tests, and under step-wise loading conditions to elucidate the impact of measurement approach in yield strength behavior. A comparison between the chosen methods based on stress-dependent strain rate plots indicates that load control measurements are a suitable alternative to the commonly used strain rate-control experiments in metals. This allows avoiding overloading and providing an estimate of the overall achievable strain rates in a ceramic. Activation energies and activation volumes in the temperature range of 1100–1170 °C indicate a similar mechanical deformation behavior to SrTiO₃

    Microstructure and conductivity of blacklight‐sintered TiO₂, YSZ, and Li₀.₃₃La₀.₅₇TiO₃

    Get PDF
    Rapid densification of ceramics has been realized and its merits were demonstrated through multiple approaches out of which UHS and flash sintering attract recent attention. So far, however, scalability remains difficult. A rise in throughput and scalability is enabled by the introduction of blacklight sintering powered by novel light source technology. Intense illumination with photon energy above the bandgap (blacklight) allows high absorption efficiency and, hence, very rapid, contactless heating for all ceramics. While heating the ceramic directly with light without any furnace promises scalability, it simultaneously offers highly accurate process control. For the technology transfer to industry, attainable material quality needs to be assured. Here, we demonstrate the excellent microstructure quality of blacklight‐sintered ceramics observed with ultrahigh voltage electron microscopy revealing an option to tune nanoporosity. Moreover, we confirm that electronic, electron, oxygen, and lithium‐ion conductivities are equal to conventionally sintered ceramics. This gives the prospect of transmitting the merits of rapid densification to the scale of industrial kilns

    Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries

    Get PDF
    Understanding the cause of lithium dendrites formation and propagation is essential for developing practical all-solid-state batteries. Li dendrites are associated with mechanical stress accumulation and can cause cell failure at current densities below the threshold suggested by industry research (i.e., >5 mA/cm2). Here, we apply a MHz-pulse-current protocol to circumvent low-current cell failure for developing all-solid-state Li metal cells operating up to a current density of 6.5 mA/cm2. Additionally, we propose a mechanistic analysis of the experimental results to prove that lithium activity near solid-state electrolyte defect tips is critical for reliable cell cycling. It is demonstrated that when lithium is geometrically constrained and local current plating rates exceed the exchange current density, the electrolyte region close to the defect releases the accumulated elastic energy favouring fracturing. As the build-up of this critical activity requires a certain period, applying current pulses of shorter duration can thus improve the cycling performance of all-solid-solid-state lithium batteries.publishedVersio

    Nanoindentation pop‐in in oxides at room temperature: Dislocation activation or crack formation?

    Get PDF
    Most oxide ceramics are known to be brittle macroscopically at room temperature with little or no dislocation-based plasticity prior to crack propagation. Here, we demonstrate the size-dependent brittle to ductile transition in SrTiO₃ at room temperature using nanoindentation pop-in events visible as a sudden increase in displacement at nominally constant load. We identify that the indentation pop-in event in SrTiO₃ at room temperature, below a critical indenter tip radius, is dominated by dislocation-mediated plasticity. When the tip radius increases to a critical size, concurrent dislocation activation and crack formation, with the latter being the dominating process, occur during the pop-in event. Beyond the experimental examination and theoretical justification presented on SrTiO₃ as a model system, further validation on α-Al₂O₃, BaTiO₃, and TiO₂ are briefly presented and discussed. A new indentation size effect, mainly for brittle ceramics, is suggested by the competition between the dislocation-based plasticity and crack formation at small scale. Our finding complements the deformation mechanism in the nano-/microscale deformation regime involving plasticity and cracking in ceramics at room temperature to pave the road for dislocation-based mechanics and functionalities study in these materials
    • 

    corecore