67 research outputs found

    Nonequilibrium Langevin Approach to Quantum Optics in Semiconductor Microcavities

    Get PDF
    Recently the possibility of generating nonclassical polariton states by means of parametric scattering has been demonstrated. Excitonic polaritons propagate in a complex interacting environment and contain real electronic excitations subject to scattering events and noise affecting quantum coherence and entanglement. Here we present a general theoretical framework for the realistic investigation of polariton quantum correlations in the presence of coherent and incoherent interaction processes. The proposed theoretical approach is based on the {\em nonequilibrium quantum Langevin approach for open systems} applied to interacting-electron complexes described within the dynamics controlled truncation scheme. It provides an easy recipe to calculate multi-time correlation functions which are key-quantities in quantum optics. As a first application, we analyze the build-up of polariton parametric emission in semiconductor microcavities including the influence of noise originating from phonon induced scattering.Comment: some corrections in the presentation mad

    Emergence of entanglement from a noisy environment: The case of polaritons

    Get PDF
    We show theoretically that polariton pairs with a high degree of polarization entanglement can be produced through parametric scattering. We demonstrate that it can emerge in coincidence experiments, even at low excitation densities where the dynamics is dominated by incoherent photoluminesce. Our analysis is based on a microscopic quantum statistical approach that treats coherent and incoherent processes on an equal footing, thus allowing for a quantitative assessment of the amount of entanglement under realistic experimental conditions. This result puts forward the robustness of pair correlations in solid-state devices, even when noise dominates one-body correlations.Comment: revised version. new figure

    Approximate computing design exploration through data lifetime metrics

    Get PDF
    When designing an approximate computing system, the selection of the resources to modify is key. It is important that the error introduced in the system remains reasonable, but the size of the design exploration space can make this extremely difficult. In this paper, we propose to exploit a new metric for this selection: data lifetime. The concept comes from the field of reliability, where it can guide selective hardening: the more often a resource handles "live" data, the more critical it be-comes, the more important it will be to protect it. In this paper, we propose to use this same metric in a new way: identify the less critical resources as approximation targets in order to minimize the impact on the global system behavior and there-fore decrease the impact of approximation while increasing gains on other criteria

    Dynamics-Controlled Truncation Scheme for Nonlinear Dynamics in Semiconductor Microcavities

    Get PDF
    We present a systematic theory of Coulomb-induced correlation effects in the nonlinear optical processes within the strong-coupling regime. In this paper we shall set a dynamics controlled truncation scheme \cite{Axt Stahl} microscopic treatment of nonlinear parametric processes in SMCs including the electromagnetic field quantization. It represents the starting point for the microscopic approach to quantum optics experiments in the strong coupling regime without any assumption on the quantum statistics of electronic excitations (excitons) involved. We exploit a previous technique, used in the semiclassical context, which, once applied to four-wave mixing in quantum wells, allowed to understand a wide range of observed phenomena \cite{Sham PRL95}. We end up with dynamical equations for exciton and photon operators which extend the usual semiclassical description of Coulomb interaction effects, in terms of a mean-field term plus a genuine non-instantaneous four-particle correlation, to quantum optical effects.Comment: preprint version, no figures an entire section adde

    Monitoring stimulated emission at the single photon level in one-dimensional atoms

    Get PDF
    We theoretically investigate signatures of stimulated emission at the single photon level for a two-level atom interacting with a one-dimensional light field. We consider the transient regime where the atom is initially excited, and the steady state regime where the atom is continuously driven with an external pump. The influence of pure dephasing is studied, clearly showing that these effects can be evidenced with state of the art solid state devices. We finally propose a scheme to demonstrate the stimulation of one optical transition by monitoring another one, in three-level one-dimensional atoms.Comment: 4 pages, 4 figures. Improved introduction; Comments adde
    • …
    corecore