20 research outputs found

    Incidence and outcome of acquired demyelinating syndromes in Dutch children: update of a nationwide and prospective study

    Get PDF
    Introduction: Acquired demyelinating syndromes (ADS) are immune-mediated demyelinating disorders of the central nervous system in children. A nationwide, multicentre and prospective cohort study was initiated in the Netherlands in 2006, with a reported ADS incidence of 0.66/100,000 per year and MS incidence of 0.15/100,000 per year in the period between 2007 and 2010. In this study, we provide an update on the incidence and the long-term follow-up of ADS in the Netherlands. Methods: Children < 18 years with a first attack of demyelination were included consecutively from January 2006 to December 2016. Diagnoses were based on the International Paediatric MS study group consensus criteria. Outcome data were collected by neurological and neuropsychological assessments, and telephone call assessments. Results: Between 2011 and 2016, 55/165 of the ADS patients were diagnosed with MS (33%). This resulted in an increased ADS and MS incidence of 0.80/100,000 per year and 0.26/100,000 per year, respectively. Since 2006 a total of 243 ADS patients have been included. During follow-up (median 55 months, IQR 28–84), 137 patients were diagnosed with monophasic disease (56%), 89 with MS (37%) and 17 with multiphasic disease other than MS (7%). At least one form of residual deficit including cognitive impairment was observed in 69% of all ADS patients, even in monophasic ADS. An Expanded Disability Status Scale score of ≥ 5.5 was reached in 3/89 MS patients (3%). Conclusion: The reported incidence of ADS in Dutch children has increased since 2010. Residual deficits are common in this group, even in monophasic patients. Therefore, long-term follow-up in ADS patients is warranted

    Sleep Detection Using a Depth Camera

    No full text

    EXPRESSION AND FUNCTIONAL-ROLE OF C-KIT LIGAND (SCF) IN HUMAN MULTIPLE-MYELOMA CELLS

    No full text
    In this study we investigated the proliferation of three well-documented MM lines and 10 bone marrow samples from myeloma patients in response to rh-SCF alone and combined with Interleukin-6 (IL-6), IL-3 and IL-3/GM-CSF fusion protein PIXY 321. Neoplastic plasma cells were highly purified (>90%) by immunomagnetic depletion of T, myeloid, monocytoid and NK cells. The number of S-phase cells was evaluated after 3 and 7 d of liquid culture by the bromodeoxyuridine (BRDU) incorporation assay. The proliferation of RPMI 8226 and U266 cell lines was also assessed by a clonogenic assay. AU the experiments were performed in serum-free conditions. RPMI 8226 cell line was not stimulated by SCF which also did not augment the proliferative activity of IL-6, IL-3 and PIXY-321. Conversely, SCF addition resulted in 2.4-fold increase of the number of U266 colonies and in a higher number of U266 and MT3 cells in S-phase (24.5 +/- 2% SEM v 14.5 +/- 1% SEM and 32 +/- 3% SEM v 21 +/- 4% SEM, respectively; P < 0.05). The c-kit ligand also enhanced the proliferation of MT3 and U266 cells mediated by the other cytokines. Anti-SCF polyclonal antibodies completely abrogated the proliferative response of MT3 cells to exogenous SCF and markedly reduced the spontaneous growth of the same cell line. Reverse transcriptase-polymerase chain reaction amplification (RT-PCR) did detect SCF mRNA in MT3 and RPMI 8226 cells. Moreover, secreted SCF was found, in a biologically active form, in the supernatant of the two cell lines by the MO7e proliferation assay. When tested on fresh myeloma samples, SCF increased the number of S-phase plasma cells (4.7 +/- 1.6% v 3.4 +/- 1.3% in control cultures; P = 0.02). Significant proliferation was also induced by IL-6 (7 +/- 2.3% of BRDU(+) cells; P = 0.006), IL-3 (5.3 +/- 1.3%; P = 0.01) and PIXY-321 (5.4 +/- 1.6%; P = 0.02). The addition of SCF significantly enhanced the proliferation of myeloma cells responsive to IL-6. In summary, our results indicate that SCF is expressed in MM cells and stimulates the proliferation of neoplastic plasma cells
    corecore