168 research outputs found

    Dietary AGEs as Exogenous Boosters of Inflammation

    Get PDF
    Most chronic modern non-transmissible diseases seem to begin as the result of low-grade inflammation extending over prolonged periods of time. The importance of diet as a source of many pro-inflammatory compounds that could create and sustain such a low-grade inflammatory state cannot be ignored, particularly since we are constantly exposed to them during the day. The focus of this review is on specific components of the diet associated with inflammation, specifically advanced glycation end products (AGEs) that form during thermal processing of food. AGEs are also generated in the body in normal physiology and are widely recognized as increased in diabetes, but many people are unaware of the potential importance of exogenous AGEs ingested in food. We review experimental models, epidemiologic data, and small clinical trials that suggest an important association between dietary intake of these compounds and development of an inflammatory and pro-oxidative state that is conducive to chronic diseases. We compare dietary intake of AGEs with other widely known dietary patterns, such as the Mediterranean and the Dietary Approaches to Stop Hypertension (DASH) diets, as well as the Dietary Inflammation Index (DII). Finally, we delineate in detail the pathophysiological mechanisms induced by dietary AGEs, both direct (i.e., non-receptor-mediated) and indirect (receptor-mediated

    Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice

    Get PDF
    Lipid composition, particularly membrane unsaturation, has been proposed as being a lifespan determinant, but it is currently unknown whether caloric restriction (CR), an accepted life-extending intervention, affects cellular lipid profiles. In this study, we employ a liquid chromatography quadrupole time-of-flight-based methodology to demonstrate that CR in the liver of male C57BL/6 mice: (i) induces marked changes in the cellular lipidome, (ii) specifically reduces levels of a phospholipid peroxidation product, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphatidylcholine, (iii) alters cellular phosphoethanolamine and triglyceride distributional profiles, (iv) affects mitochondrial electron transport chain complexes, increasing complex II and decreasing complex III and (v) is associated with specific changes in liver metabolic pathways. These data demonstrate that CR induces a specific lipidome and metabolome reprogramming event in mouse liver which is associated with lower protein oxidative damage, as assessed by mass spectrometry-based measurements. Such changes may be critical to the increased lifespan and healthspan observed in C57BL/6 mice following CR

    Adipose Tissue Mitochondrial Factors Profile after Dietary Bioactive Compound Weight Reduction Treatments in a Mice Obesity Model

    Get PDF
    Prolonged caloric intake above energy needs disturbs the body's ability to store and manage the excess of energy intake, leading to the onset of chronic degenerative diseases. This study aimed to compare the effect of three foods, which contain demonstrated bioactive compounds in the treatment of obesity and as an adjuvant in obesity energy restriction treatments. In a mice obesity model induced through a high-fat diet; fish oil, soluble fibre, and soy were incorporated to evaluate its capacity to modulate metabolic factors in adipose tissue during a continued fat intake or weight reduction through a normocaloric diet. As a result, fish oil improved mitochondrial related, adipose tissue hormone expression, and oxidation products when high-fat diets are consumed; while soluble fibre improved glucose and inflammation pathways during high-fat diet intake. In weight reduction treatments few differential features, as a treatment adjuvant, were observed for fish oil and soy; while soluble fibre was able to improve the weight reduction effects induced by a normocaloric diet. As a conclusion, soluble fibre supplementation compared to an energy reduction program, was the only treatment able to induce a significant additional effect in the improvement of weight loss and adipose tissue metabolism

    In Vivo Anti-Inflammatory Effects and Related Mechanisms of Processed Egg Yolk, a Potential Anti-Inflammaging Dietary Supplement

    Get PDF
    Egg-yolk based supplements have demonstrated biological effects. We have developed a novel processed egg-yolk (PEY) complement, and we have tested whether it has inflammation modulatory properties. These were evaluated in a lipopolysaccharide (LPS)-challenge in 1-month male rats by in vivo circulating cytokine profiles measured by multiplexing techniques. Cell culture was used to explore ex vivo properties of derived serum samples. We explored growth factor composition, and mass-spectrometry metabolome and lipidome analyses of PEY to characterize it. PEY significantly prevented LPS-induced increase in IL-1 ÎČ, TNF-α, and MCP-1. Further, serum from PEY-treated animals abrogated LPS-induced iNOS build-up of the Raw 264.7 macrophage-like cell line. Immunochemical analyses demonstrated increased concentrations of insulin-like growth factor 1 (IGF-1), connective tissue growth factor (CTGF), and platelet-derived growth factor (PDGF) in the extract. PEY vs. egg-yolk comparative metabolomic analyses showed significative differences in the concentrations of at least 140 molecules, and in 357 in the lipidomic analyses, demonstrating the complexity of PEY. Globally, PEY acts as an orally-bioavailable immunomodulatory extract that may be of interest in those conditions associated with disarranged inflammation, such as inflammaging

    Biomarkers of aging in Drosophila

    Get PDF
    Low environmental temperature and dietary restriction (DR) extend lifespan in diverse organisms. In the fruit fly Drosophila, switching flies between temperatures alters the rate at which mortality subsequently increases with age but does not reverse mortality rate. In contrast, DR acts acutely to lower mortality risk; flies switched between control feeding and DR show a rapid reversal of mortality rate. Dietary restriction thus does not slow accumulation of aging-related damage. Molecular species that track the effects of temperatures on mortality but are unaltered with switches in diet are therefore potential biomarkers of aging-related damage. However, molecular species that switch upon instigation or withdrawal of DR are thus potential biomarkers of mechanisms underlying risk of mortality, but not of aging-related damage. Using this approach, we assessed several commonly used biomarkers of aging-related damage. Accumulation of fluorescent advanced glycation end products (AGEs) correlated strongly with mortality rate of flies at different temperatures but was independent of diet. Hence, fluorescent AGEs are biomarkers of aging-related damage in flies. In contrast, five oxidized and glycated protein adducts accumulated with age, but were reversible with both temperature and diet, and are therefore not markers either of acute risk of dying or of aging-related damage. Our approach provides a powerful method for identification of biomarkers of aging.This work was supported by the Wellcome Trust and in part by I+D grants from the Spanish Ministry of Education and Science (BFU2006-14495 ⁄ BFI), the Spanish Ministry of Health (ISCIII, Red de Envejecimiento y Fragilidad, RD06 ⁄ 0013 ⁄ 0012), and the Generalitat of Catalunya (2005SGR00101) to R.P; the Spanish Ministry of Health (FIS PI081843), Spanish Ministry of Education and Science (AGL2006-12433), and ‘‘La Caixa’’ Foundation to M.P.O. Also supported by the Max Planck Society (J.J. and L.P), COST B-35 Action; Research into Ageing (A.J.L.) and the Medical Research Council and National Institutes of Health (P01 AG025901, PL1 AG032118 and P30 AG025708) (M.D.B.)
    • 

    corecore