34,790 research outputs found

    Two-phase, passive separator-and-filter assembly

    Get PDF
    Assembly separates liquid from gas by passive hydrophilic/hydrophobic material approach. Apparatus is comprised of porous glass hydrophilic tubes. Quantity, lateral size, and pore size of glass tubes are determined by particular design requirements with regard to water rate, water quality contamination level, application endurance life, and operating differential pressure level

    JAKARTA, INDONESIA: THE ECONOMICS OF WATER AND WASTE

    Get PDF
    Jakarta's main streets are landscaped, manicured, and modern. Off these streets, however, the environment is that of an overgrown village. Compared to other Asian cities, Jakarta's drinking water, sewerage treatment, solid waste disposal, and general environment are seriously deficient. This case study briefly outlines the deficiencies. Less than one-fourth the residents have piped water. Almost no one is attached to a sewer. One-third of the city's solid waste never reaches the landfill. The source of the problems is historical -- for a long time, the problems of this rapidly growing city were not adequately addressed. And the problem has become worse in recent years by the policymakers' concern with providing first-class service to all, despite the fact that budgetary shortcomings prevent them from extending such service beyond the richest households. As a result, the poor often receive no public services and must resort to expensive private provision or do without. The principal lesson from and for Jakarta is that policymakers must give more attention to providing less-than-first-class but affordable services to the poor.Environmental Economics and Policy,

    Giant Electron-hole Charging Energy Asymmetry in Ultra-short Carbon Nanotubes

    Get PDF
    Making full usage of bipolar transport in single-wall carbon nanotube (SWCNT) transistors could permit the development of two-in-one quantum devices with ultra-short channels. We report on clean \sim10 to 100 nm long suspended SWCNT transistors which display a large electron-hole transport asymmetry. The devices consist of naked SWCNT channels contacted with sections of SWCNT-under-annealed-gold. The annealed gold acts as an n-doping top gate which creates nm-sharp barriers at the junctions between the contacts and naked channel. These tunnel barriers define a single quantum dot (QD) whose charging energies to add an electron or a hole are vastly different (ehe-h charging energy asymmetry). We parameterize the ehe-h transport asymmetry by the ratio of the hole and electron charging energies ηeh\eta_{e-h}. We show that this asymmetry is maximized for short channels and small band gap SWCNTs. In a small band gap SWCNT device, we demonstrate the fabrication of a two-in-one quantum device acting as a QD for holes, and a much longer quantum bus for electrons. In a 14 nm long channel, ηeh\eta_{e-h} reaches up to 2.6 for a device with a band gap of 270 meV. This strong ehe-h transport asymmetry survives even at room temperature

    Norman Julius Zabusky OBITUARY

    Full text link
    Norman Julius Zabusky, who laid the foundations for several critical advancements in nonlinear science and experimental mathematics, died of idiopathic pulmonary fibrosis on 5 February 2018 in Beersheba, Israel. He also made fundamental contributions to computational fluid dynamics and advocated the importance of visualization in science.Published versio

    Few-fermion systems in one dimension: Ground- and excited-state energies and contacts

    Get PDF
    Using the lattice Monte Carlo method, we compute the energy and Tan's contact in the ground state as well as the first excited state of few- to many-fermion systems in a one-dimensional periodic box. We focus on unpolarized systems of N=4,6,...,12 particles, with a zero-range interaction, and a wide range of attractive couplings. In addition, we provide extrapolations to the infinite-volume and thermodynamic limits.Comment: 8 pages, 12 figures; published versio

    Severity of disease and risk of malignant change in hereditary multiple exostoses. A genotype-phenotype study

    Get PDF
    We performed a prospective genotype-phenotype study using molecular screening and clinical assessment to compare the severity of disease and the risk of sarcoma in 172 individuals (78 families) with hereditary multiple exostoses. We calculated the severity of disease including stature, number of exostoses, number of surgical procedures that were necessary, deformity and functional parameters and used molecular techniques to identify the genetic mutations in affected individuals. Each arm of the genotype-phenotype study was blind to the outcome of the other. Mutations EXT1 and EXT2 were almost equally common, and were identified in 83% of individuals. Non-parametric statistical tests were used. There was a wide variation in the severity of disease. Children under ten years of age had fewer exostoses, consistent with the known age-related penetrance of this condition. The severity of the disease did not differ significantly with gender and was very variable within any given family. The sites of mutation affected the severity of disease with patients with EXT1 mutations having a significantly worse condition than those with EXT2 mutations in three of five parameters of severity (stature, deformity and functional parameters). A single sarcoma developed in an EXT2 mutation carrier, compared with seven in EXT1 mutation carriers. There was no evidence that sarcomas arose more commonly in families in whom the disease was more severe. The sarcoma risk in EXT1 carriers is similar to the risk of breast cancer in an older population subjected to breast-screening, suggesting that a role for regular screening in patients with hereditary multiple exostoses is justifiable. ©2004 British Editorial Society of Bone and Joint Surgery

    A procedure for assessing aircraft turbulence- penetration performance

    Get PDF
    Subsonic transport aircraft performance assessment during atmospheric turbulenc

    Antiquark nuggets as dark matter: New constraints and detection prospects

    Full text link
    Current evidence for dark matter in the universe does not exclude heavy composite nuclear-density objects consisting of bound quarks or antiquarks over a significant range of masses. Here we analyze one such proposed scenario, which hypothesizes antiquark nuggets with a range of log10(B) = 24-30 with specific predictions for spectral emissivity via interactions with normal matter. We find that, if these objects make up the majority of the dark matter density in the solar neighborhood, their radiation efficiency in solids is marginally constrained, due to limits from the total geothermal energy budget of the Earth. At allowed radiation efficiencies, the number density of such objects can be constrained to be well below dark matter densities by existing radio data over a mass range currently not restricted by other methods.Comment: 6 pages, 3 figures, revised references; submitted to PR
    corecore