453 research outputs found

    Haplotype-based association analysis of general cognitive ability in Generation Scotland, the English Longitudinal Study of Ageing, and UK Biobank

    Get PDF
    Background: Cognitive ability is a heritable trait with a polygenic architecture, for which several associated variants have been identified using genotype-based and candidate gene approaches. Haplotype-based analyses are a complementary technique that take phased genotype data into account, and potentially provide greater statistical power to detect lower frequency variants. Methods: In the present analysis, three cohort studies (ntotal = 48,002) were utilised: Generation Scotland: Scottish Family Health Study (GS:SFHS), the English Longitudinal Study of Ageing (ELSA), and the UK Biobank. A genome-wide haplotype-based meta-analysis of cognitive ability was performed, as well as a targeted meta-analysis of several gene coding regions. Results: None of the assessed haplotypes provided evidence of a statistically significant association with cognitive ability in either the individual cohorts or the meta-analysis. Within the meta-analysis, the haplotype with the lowest observed P-value overlapped with the D-amino acid oxidase activator (DAOA) gene coding region. This coding region has previously been associated with bipolar disorder, schizophrenia and Alzheimer’s disease, which have all been shown to impact upon cognitive ability. Another potentially interesting region highlighted within the current genome-wide association analysis (GS:SFHS: P = 4.09 x 10-7), was the butyrylcholinesterase (BCHE) gene coding region. The protein encoded by BCHE has been shown to influence the progression of Alzheimer’s disease and its role in cognitive ability merits further investigation. Conclusions: Although no evidence was found for any haplotypes with a statistically significant association with cognitive ability, our results did provide further evidence that the genetic variants contributing to the variance of cognitive ability are likely to be of small effect

    Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing:a population-based study

    Get PDF
    Background<p></p> Familial hypercholesterolaemia (FH) is a common Mendelian condition which, untreated, results in premature coronary heart disease. An estimated 88% of FH cases are undiagnosed in the UK. We previously validated a method for FH mutation detection in a lipid clinic population using next generation sequencing (NGS), but this did not address the challenge of identifying index cases in primary care where most undiagnosed patients receive healthcare. Here, we evaluate the targeted use of NGS as a potential route to diagnosis of FH in a primary care population subset selected for hypercholesterolaemia.<p></p> Methods<p></p> We used microfluidics-based PCR amplification coupled with NGS and multiplex ligation-dependent probe amplification (MLPA) to detect mutations in LDLR, APOB and PCSK9 in three phenotypic groups within the Generation Scotland: Scottish Family Health Study including 193 individuals with high total cholesterol, 232 with moderately high total cholesterol despite cholesterol-lowering therapy, and 192 normocholesterolaemic controls.<p></p> Results<p></p> Pathogenic mutations were found in 2.1% of hypercholesterolaemic individuals, in 2.2% of subjects on cholesterol-lowering therapy and in 42% of their available first-degree relatives. In addition, variants of uncertain clinical significance (VUCS) were detected in 1.4% of the hypercholesterolaemic and cholesterol-lowering therapy groups. No pathogenic variants or VUCS were detected in controls.<p></p> Conclusions<p></p> We demonstrated that population-based genetic testing using these protocols is able to deliver definitive molecular diagnoses of FH in individuals with high cholesterol or on cholesterol-lowering therapy. The lower cost and labour associated with NGS-based testing may increase the attractiveness of a population-based approach to FH detection compared to genetic testing with conventional sequencing. This could provide one route to increasing the present low percentage of FH cases with a genetic diagnosis

    Associations of negative affective biases and depressive symptoms in a community-based sample

    Get PDF
    Acknowledgements. We thank professor Jonathan Roiser (University College London, UK) and professor emeritus Ian Deary (University of Edinburgh, UK) for their input on task selection and statistical analysis. We also acknowledge all researchers who have contributed to the collection of data for the current study. Most importantly, we would like to thank all participants of Generation Scotland, and particularly those of the STRADL subcohort, for their participation in the research. Financial support. Stratifying Resilience and Depression Longitudinally is supported by the Wellcome Trust through a Strategic Award (Grant No. 104036/Z/14/Z) and through an Investigator Award (Grant No. 220857/Z/ 20/Z). The Chief Scientist Office of the Scottish Government Health Department (Grant No. CZD/16/6), Scottish Funding Council (Grant No. HR03006) and Wellcome Trust (Grant No. 216767/Z/19/Z) provided core support for Generation Scotland.Peer reviewedPublisher PD

    Associations of negative affective biases and depressive symptoms in a community-based sample

    Get PDF
    Background: Major depressive disorder (MDD) was previously associated with negative affective biases. Evidence from larger population-based studies, however, is lacking, including whether biases normalise with remission. We investigated associations between affective bias measures and depressive symptom severity across a large community-based sample, followed by examining differences between remitted individuals and controls. Methods: Participants from Generation Scotland (N = 1109) completed the: (i) Bristol Emotion Recognition Task (BERT), (ii) Face Affective Go/No-go (FAGN), and (iii) Cambridge Gambling Task (CGT). Individuals were classified as MDD-current (n = 43), MDD-remitted (n = 282), or controls (n = 784). Analyses included using affective bias summary measures (primary analyses), followed by detailed emotion/condition analyses of BERT and FAGN (secondary analyses). Results: For summary measures, the only significant finding was an association between greater symptoms and lower risk adjustment for CGT across the sample (individuals with greater symptoms were less likely to bet more, despite increasingly favourable conditions). This was no longer significant when controlling for non-affective cognition. No differences were found for remitted-MDD v. controls. Detailed analysis of BERT and FAGN indicated subtle negative biases across multiple measures of affective cognition with increasing symptom severity, that were independent of non-effective cognition [e.g. greater tendency to rate faces as angry (BERT), and lower accuracy for happy/neutral conditions (FAGN)]. Results for remitted-MDD were inconsistent. Conclusions: This suggests the presence of subtle negative affective biases at the level of emotion/condition in association with depressive symptoms across the sample, over and above those accounted for by non-affective cognition, with no evidence for affective biases in remitted individuals

    Blunted Medial Prefrontal Cortico-Limbic Reward-Related Effective Connectivity and Depression

    Get PDF
    Stratifying Resilience and Depression Longitudinally (STRADL) was supported by the Wellcome Trust through a Strategic Award (Grant No. 104036/Z/14/Z). Parts of the work were supported by a China Scholarship Council (Grant No. 201506040037 to SX), National Institutes of Health (Grant No. DA027764 to MRD), Lister Institute Prize Fellowship 2016–2021 (to DJS), Dr Mortimer and Theresa Sackler Foundation (AMM, HCW, and SML), Centre for Cognitive Ageing and Cognitive Epidemiology (IJD and AMM), Medical Research Council and Biotechnology and Biological Sciences Research Council (Grant No. MR/K026992/1), Royal College of Physicians of Edinburgh John, Margaret, Alfred and Stewart Sim fellowship (to HCW), and University of Edinburgh, Edinburgh Scientific Academic TmPCk College Fellowship (to HCW). The Chief Scientist Office of the Scottish Government Health Department (Grant No. CZD/16/6) and Scottish Funding Council (Grant No. HR03006) provided core support for Generation Scotland. Data acquisition was additionally supported by the Scottish Mental Health Research Network and Scottish Government’s Support for Science initiative. LR, HCW, and AMM, received financial support from Pfizer (formerly Wyeth) in relation to imaging studies of people with schizophrenia and bipolar disorder. AMM has previously received grant support from Lilly and Janssen. SML has received honoraria for lectures, chairing meetings, and consultancy work from Janssen in connection with brain imaging and therapeutic initiatives for psychosis. JDS has received funding via an honorarium associated with a lecture or Wyeth and funding from Indivior for a study on opioid dependency. No other disclosures were reported. The authors declare no conflict of interest.Peer reviewedPublisher PD

    Genome-wide association study of antidepressant treatment resistance in a population-based cohort using health service prescription data and meta-analysis with GENDEP

    Get PDF
    Antidepressants demonstrate modest response rates in the treatment of major depressive disorder (MDD). Despite previous genome-wide association studies (GWAS) of antidepressant treatment response, the underlying genetic factors are unknown. Using prescription data in a population and family-based cohort (Generation Scotland: Scottish Family Health Study; GS:SFHS), we sought to define a measure of (a) antidepressant treatment resistance and (b) stages of antidepressant resistance by inferring antidepressant switching as non-response to treatment. GWAS were conducted separately for antidepressant treatment resistance in GS:SFHS and the Genome-based Therapeutic Drugs for Depression (GENDEP) study and then meta-analysed (meta-analysis n = 4213, cases = 358). For stages of antidepressant resistance, a GWAS on GS:SFHS only was performed (n = 3452). Additionally, we conducted gene-set enrichment, polygenic risk scoring (PRS) and genetic correlation analysis. We did not identify any significant loci, genes or gene sets associated with antidepressant treatment resistance or stages of resistance. Significant positive genetic correlations of antidepressant treatment resistance and stages of resistance with neuroticism, psychological distress, schizotypy and mood disorder traits were identified. These findings suggest that larger sample sizes are needed to identify the genetic architecture of antidepressant treatment response, and that population-based observational studies may provide a tractable approach to achieving the necessary statistical power
    corecore