41 research outputs found

    Investigation of three new mouse mammary tumor cell lines as models for transforming growth factor (TGF)-β and Neu pathway signaling studies: identification of a novel model for TGF-β-induced epithelial-to-mesenchymal transition

    Get PDF
    INTRODUCTION: This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TβRII-AS (transforming growth factor [TGF]-β type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line). METHODS: The BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-β families (recombinant human EGF, heregulin-β(1 )and TGF-β(1)). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-β(1), and they were therefore further investigated for their ability to undergo a TGF-β-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy. RESULTS: We found that two of the three cell lines (BRI-JM04 and BRI-JM05) express the Neu transgene, whereas, unexpectedly, both of the cell lines that were established from MMTV/activated Neu + TβRII-AS bigenic tumors (BRI-JM01 and BRI-JM05) do not express the TβRII-AS transgene. The cuboidal BRI-JM01 cells exhibit a short doubling time and are able to form confluent monolayers. The BRI-JM04 and BRI-JM05 cell lines are morphologically much less uniform, grow at a much slower rate, and do not form confluent monolayers. Only the BRI-JM05 cells can form colonies in soft agar. In contrast, all three cell lines form colonies in Matrigel, although the BRI-JM04 and BRI-JM05 cell lines do so more efficiently than the BRI-JM01 cell line. All three cell lines express the cell surface marker E-cadherin, confirming their epithelial character. Proliferation assays showed that the three cell lines respond differently to recombinant human EGF and heregulin-β(1), and that all are growth inhibited by TGF-β(1), but that only the BRI-JM01 cell line undergoes an EMT and exhibits increased motility upon TGF-β(1 )treatment. CONCLUSION: We suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying TGF-β(1)-induced EMT

    Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro

    Get PDF
    INTRODUCTION: Transforming growth factor (TGF)-β1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell–cell contacts. Although there is growing interest in TGF-β1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS: To identify alternative cell systems in which to study TGF-β1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-β1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-β1 was also determined by [(3)H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS: TGF-β1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-β1. In contrast, TGF-β1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-β1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-β1-induced EMT. CONCLUSION: The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-β1, most show evidence of TGF-β1 signal transduction, but only a few cell lines undergo TGF-β1-mediated EMT

    Cognitive Dysfunction Is Sustained after Rescue Therapy in Experimental Cerebral Malaria, and Is Reduced by Additive Antioxidant Therapy

    Get PDF
    Neurological impairments are frequently detected in children surviving cerebral malaria (CM), the most severe neurological complication of infection with Plasmodium falciparum. The pathophysiology and therapy of long lasting cognitive deficits in malaria patients after treatment of the parasitic disease is a critical area of investigation. In the present study we used several models of experimental malaria with differential features to investigate persistent cognitive damage after rescue treatment. Infection of C57BL/6 and Swiss (SW) mice with Plasmodium berghei ANKA (PbA) or a lethal strain of Plasmodium yoelii XL (PyXL), respectively, resulted in documented CM and sustained persistent cognitive damage detected by a battery of behavioral tests after cure of the acute parasitic disease with chloroquine therapy. Strikingly, cognitive impairment was still present 30 days after the initial infection. In contrast, BALB/c mice infected with PbA, C57BL6 infected with Plasmodium chabaudi chabaudi and SW infected with non lethal Plasmodium yoelii NXL (PyNXL) did not develop signs of CM, were cured of the acute parasitic infection by chloroquine, and showed no persistent cognitive impairment. Reactive oxygen species have been reported to mediate neurological injury in CM. Increased production of malondialdehyde (MDA) and conjugated dienes was detected in the brains of PbA-infected C57BL/6 mice with CM, indicating high oxidative stress. Treatment of PbA-infected C57BL/6 mice with additive antioxidants together with chloroquine at the first signs of CM prevented the development of persistent cognitive damage. These studies provide new insights into the natural history of cognitive dysfunction after rescue therapy for CM that may have clinical relevance, and may also be relevant to cerebral sequelae of sepsis and other disorders

    Normative modelling of brain morphometry across the lifespan with CentileBrain: algorithm benchmarking and model optimisation

    Full text link
    The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3–90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain

    Apolipoprotein E genotype does not moderate the associations of depressive symptoms, neuroticism and allostatic load with cognitive ability and cognitive aging in the Lothian Birth Cohort 1936

    Get PDF
    <div><p>Objectives</p><p>In this replication-and-extension study, we tested whether depressive symptoms, neuroticism, and allostatic load (multisystem physiological dysregulation) were related to lower baseline cognitive ability and greater subsequent cognitive decline in older adults, and whether these relationships were moderated by the E4 allele of the apolipoprotein E (<i>APOE</i>) gene. We also tested whether allostatic load mediated the relationships between neuroticism and cognitive outcomes.</p><p>Methods</p><p>We used data from the Lothian Birth Cohort 1936 (<i>n</i> at Waves 1–3: 1,028 [<i>M</i> age = 69.5 y]; 820 [<i>M</i> duration since Wave 1 = 2.98 y]; 659 [<i>M</i> duration since Wave 1 = 6.74 y]). We fitted latent growth curve models of general cognitive ability (modeled using five cognitive tests) with groups of <i>APOE</i> E4 non-carriers and carriers. In separate models, depressive symptoms, neuroticism, and allostatic load predicted baseline cognitive ability and subsequent cognitive decline. In addition, models tested whether allostatic load mediated relationships between neuroticism and cognitive outcomes.</p><p>Results</p><p>Baseline cognitive ability had small-to-moderate negative associations with depressive symptoms (<i>β</i> range = -0.20 to -0.17), neuroticism (<i>β</i> range = -0.27 to -0.23), and allostatic load (<i>β</i> range = -0.11 to 0.09). Greater cognitive decline was linked to baseline allostatic load (<i>β</i> range = -0.98 to -0.83) and depressive symptoms (<i>β</i> range = -1.00 to -0.88). However, <i>APOE</i> E4 allele possession did not moderate the relationships of depressive symptoms, neuroticism and allostatic load with cognitive ability and cognitive decline. Additionally, the associations of neuroticism with cognitive ability and cognitive decline were not mediated through allostatic load.</p><p>Conclusions</p><p>Our results suggest that <i>APOE</i> E4 status does not moderate the relationships of depressive symptoms, neuroticism, and allostatic load with cognitive ability and cognitive decline in healthy older adults. The most notable positive finding in the current research was the strong association between allostatic load and cognitive decline.</p></div

    All about neosporosis in Brazil

    Full text link
    corecore