461 research outputs found

    The Origin of OB Runaway Stars

    Full text link
    About 20% of all massive stars in the Milky Way have unusually high velocities, the origin of which has puzzled astronomers for half a century. We argue that these velocities originate from strong gravitational interactions between single stars and binaries in the centers of star clusters. The ejecting binary forms naturally during the collapse of a young (\aplt 1\,Myr) star cluster. This model replicates the key characteristics of OB runaways in our galaxy and it explains the \apgt 100\,\Msun\, runaway stars around young star clusters, e.g. R136 and Westerlund~2. The high proportion and the distributions in mass and velocity of runaways in the Milky Way is reproduced if the majority of massive stars are born in dense and relatively low-mass (5000-10000 \Msun) clusters.Comment: to appear in Scienc

    Black hole mergers in the universe

    Get PDF
    Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black-hole binaries become more tightly bound by superelastic encounters with other cluster members, and are ultimately ejected from the cluster. The majority of escaping black-hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black-hole merger rate of about 1.6×10−71.6 \times 10^{-7} per year per cubic megaparsec, implying gravity wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first two years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.Comment: 12 pages, ApJL in pres

    Selection of the SIM Astrometric Grid

    Get PDF
    We investigate the choice of stellar population for use as the Astrometric Grid for the Space Interferometry Mission (SIM). SIM depends on the astrometric stability of about 2000 stars, the so called Grid, against which the science measures are referenced. Low metallicity, and thus relatively high luminosity K giants are shown to be the population of choice, when available. The alternative, nearby G dwarfs, are shown to be suseptable to unmodeled motions induced by gas-giant planetary companions, should there be a significant population of such companions. Radial velocity filtering is quite efficient in selecting Grid members from the K giants with yields exceeding 50% if filtering at 30m/s (1-sigma) is available. However if the binary fraction of the G dwarfs approaches 100% as some studies suggest, the yield of stable systems would be in the range of 15% at best (with 10m/s filtering). Use of the initial SIM measurement as a final filter is shown not to be critical in either case, although it could improve the yield of stable grid members. For a Grid composed of weak-lined K giants, the residual contamination by large unmodeled motions will amount to about 3% (and rises to about 6% if a 60m/s radial velocity criterion is used). The selective introduction of quadratic terms in the proper motion solutions during the post-mission phase of data reduction can reduce contamination to a remarkable 1% or better in either case. Analytic estimates based on circular orbits are developed which show how these results come about.Comment: 42 pages including 13 eps figures. To be published Sept 2002 in PAS

    Monte-Carlo Simulations of Globular Cluster Evolution - I. Method and Test Calculations

    Get PDF
    We present a new parallel supercomputer implementation of the Monte-Carlo method for simulating the dynamical evolution of globular star clusters. Our method is based on a modified version of Henon's Monte-Carlo algorithm for solving the Fokker-Planck equation. Our code allows us to follow the evolution of a cluster containing up to 5x10^5 stars to core collapse in < 40 hours of computing time. In this paper we present the results of test calculations for clusters with equal-mass stars, starting from both Plummer and King model initial conditions. We consider isolated as well as tidally truncated clusters. Our results are compared to those obtained from approximate, self-similar analytic solutions, from direct numerical integrations of the Fokker-Planck equation, and from direct N-body integrations performed on a GRAPE-4 special-purpose computer with N=16384. In all cases we find excellent agreement with other methods, establishing our new code as a robust tool for the numerical study of globular cluster dynamics using a realistic number of stars.Comment: 35 pages, including 8 figures, submitted to ApJ. Revised versio

    On the Interpretation of the Age Distribution of Star Clusters in the Small Magellanic Cloud

    Full text link
    We re-analyze the age distribution (dN/dt) of star clusters in the Small Magellanic Cloud (SMC) using age determinations based on the Magellanic Cloud Photometric Survey. For ages younger than 3x10^9 yr the dN/dt distribution can be approximated by a power-law distribution, dN/dt propto t^-beta, with -beta=-0.70+/-0.05 or -beta=-0.84+/-0.04, depending on the model used to derive the ages. Predictions for a cluster population without dissolution limited by a V-band detection result in a power-law dN/dt distribution with an index of ~-0.7. This is because the limiting cluster mass increases with age, due to evolutionary fading of clusters, reducing the number of observed clusters at old ages. When a mass cut well above the limiting cluster mass is applied, the dN/dt distribution is flat up to 1 Gyr. We conclude that cluster dissolution is of small importance in shaping the dN/dt distribution and incompleteness causes dN/dt to decline. The reason that no (mass independent) infant mortality of star clusters in the first ~10-20 Myr is found is explained by a detection bias towards clusters without nebular emission, i.e. cluster that have survived the infant mortality phase. The reason we find no evidence for tidal (mass dependent) cluster dissolution in the first Gyr is explained by the weak tidal field of the SMC. Our results are in sharp contrast to the interpretation of Chandar et al. (2006), who interpret the declining dN/dt distribution as rapid cluster dissolution. This is due to their erroneous assumption that the sample is limited by cluster mass, rather than luminosity.Comment: 8 pages, 4 figures, accepted for publication in Ap

    How many young star clusters exist in the Galactic center?

    Get PDF
    We study the evolution and observability of young compact star clusters within about 200pc of the Galactic center. Calculations are performed using direct N-body integration on the GRAPE-4, including the effects of both stellar and binary evolution and the external influence of the Galaxy. The results of these detailed calculations are used to calibrate a simplified model applicable over a wider range of cluster initial conditions. We find that clusters within 200 pc from the Galactic center dissolve within about 70 Myr. However, their projected densities drop below the background density in the direction of the Galactic center within 20 Myr, effectively making these clusters undetectable after that time. Clusters farther from the Galactic center but at the same projected distance are more strongly affected by this selection effect, and may go undetected for their entire lifetimes. Based on these findings, we conclude that the region within 200 pc of the Galactic center could easily harbor some 50 clusters with properties similar to those of the Arches or the Quintuplet systems.Comment: ApJ Letters in pres

    Progenitors of Supernovae Type Ia

    Full text link
    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.Comment: 6 pages, 6 figures, appeared in proceedings for "The 18th European White Dwarf Workshop
    • 

    corecore