59 research outputs found

    Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

    Get PDF
    International audienceIn this work a novel process allowing for the production of nanoporous Ge thin films is presented. This process uses the combination of two techniques: Ge sputtering on SiO 2 and dopant ion implantation. The process entails four successive steps: (i) Ge sputtering on SiO 2 , (ii) implantation preannealing, (iii) high-dose dopant implantation, and (iv) implantation postannealing. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the Ge film at different process steps under different postannealing conditions. For the same postannealing conditions, the Ge film topology was shown to be similar for different implantation doses and different dopants. However, the film topology can be controlled by adjusting the postannealing conditions

    Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

    Get PDF
    In this work a novel process allowing for the production of nanoporous Ge thin films is presented. This process uses the combination of two techniques: Ge sputtering on SiO2 and dopant ion implantation. The process entails four successive steps: (i) Ge sputtering on SiO2, (ii) implantation preannealing, (iii) high-dose dopant implantation, and (iv) implantation postannealing. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the Ge film at different process steps under different postannealing conditions. For the same postannealing conditions, the Ge film topology was shown to be similar for different implantation doses and different dopants. However, the film topology can be controlled by adjusting the postannealing conditions

    Influence of the Mn5Ge3/Ge ohmic-contact interface on the Seebeck coefficient of the Mn5Ge3/Ge bilayer

    No full text
    Thermoelectricity is a well-known effect that can be used to convert heat energy into electrical energy. However, the yield of this conversion is still low compared to current photovoltaic technology. It is limited by the intrinsic properties of materials, leading to intensive materials science investigations for the design of efficient thermoelectric (TE) materials. Interface engineering was shown to be a valuable solution for improving materials’ TE properties, supporting the development of multiphase TE materials. In particular, interfaces have been suggested to promote the increase of the Seebeck coefficient of materials without significantly impacting their electrical conductivity through the so-called energy filtering effect. This work aims at determining experimentally the effect of a metal/semiconductor interface exhibiting an ohmic character on the effective Seebeck coefficient of multiphase materials, focusing on the n-type Mn5Ge3/p-type Ge interface. This interface is shown not to contribute to carrier transport, but to contribute to carrier concentration filtering due to carrier injection or recombination. The Seebeck coefficient of the bi-phase material is shown to be dependent on the direction carriers are crossing the interface. The interface effect mainly results from a modification of charge carrier concentrations in the semiconductor

    Coupling Secondary Ion Mass Spectrometry and Atom Probe Tomography for Atomic Diffusion and Segregation Measurements

    No full text
    International audienc

    Ge Dots Self-Assembling: Surfactant Mediated Growth of Ge on Sige (118) Stress-Induced Kinetic Instabilities

    No full text
    The ordering of islands on naturally or artificially nanostructured surfaces is one of the most recent objectives among actual nanotechnology challenges. We show in this letter that, by a combination of two approaches, i.e., a two-step molecular beam epitaxy (MBE) deposition process and surfactant-mediated growth, we are able to obtain chains of nicely ordered ultrasmall islands of lateral size below 50 nm. The two-step MBE process consists of vicinal Si(001) surface self-patterning by SiGe growth instability and Ge dot ordering by subsequent Ge deposition on a SiGe template layer. The surfactant-mediated growth consists of submonolayer Sb deposition prior to Ge growth, in order to reduce the island size up to 25 nm. The best ordering of Ge islands is obtained when the island size matches the wavelength of the template layer

    Mg-Ag-Sb thin films produced by solid-state reactive diffusion

    No full text
    a-MgAgSb is a tellurium-free thermoelectric material that exhibits good thermoelectric properties near room temperature. Being made of relatively abundant elements compatible with the complementary metal oxide semiconductor (CMOS) technology, it is considered as a possible solution for the development of highefficiency thermoelectric devices for heat waste harvesting in microelectronic setups. This study presents a first attempt to investigate the structural properties of MgAgSb thin films prepared by solid-state reactive diffusion. X-ray diffraction (XRD) was used to follow phase formation in thin films, first, in the case of the binary Ag 3 Sb and Mg 3 Sb 2 compounds, and then, in the case of the ternary system Mg-Ag-Sb. For the later, in situ XRD was used to follow real-time phase formations during the reaction of the bilayerAg 3 Sb/Mg 3 Sb 2. The results show that the phase a-MgAgSb can be produced by reactive diffusion at the interface of the bilayer. Furthermore, the three phases a, b, and g are shown to coexist at 360 °C, which can be the result of the thin film geometry (surface and interface effects) or due to a different stoichiometry between these three phases contrasting with usual belief. At temperatures higher than 450 °C, g-MgAgSb is the only phase stabilized in the film. This study serves as a benchmark for the production of pure a-MgAgSb thermoelectric thin films by reactive diffusion

    Redistribution of Metallic Impurities in Si during Annealing and Oxidation: W and Fe

    Get PDF
    International audienceAtomic redistribution of W and Fe in Si were studied using secondary ion mass spectrometry and transmission electron microscopy. W diffusion experiments performed during isothermal annealing and during Si oxidation show that W atoms should use at least two different diffusion mechanisms. Experimental diffusion profiles can be well simulated by considering the simultaneous use of three different W diffusion mechanisms: the dissociative and the kick-out mechanisms, as well as an original mechanism based on the formation of a W-Si self-interstitial pair located on the interstitial Si sub-lattice. Fe redistribution was studied during the oxidation of a Fe-contaminated Si wafer. Fe is shown to be first pushed-out in Si by the mobile SiO 2 /Si interface, and thus to form Fe silicides at this interface. The silicide precipitates, which can exhibit a core-shell structure, appear to move with the SiO 2 /Si interface thanks to an oxidation/dissolution mechanism in the SiO 2 and a nucleation/growth mechanism in the Si matrix. Furthermore, the rate difference between Si and Fe silicide precipitate oxidation leads to the formation of Si pyramidal defects at the SiO 2 /Si interface
    • …
    corecore