6,988 research outputs found

    Factors Affecting Biodiversity Protection in the Mediterranean Basin

    Full text link
    Earth’s biodiversity includes all extant species; however, species are not evenly distributed across the planet. Species tend to be clustered in densely populated areas known as “biodiversity hotspots;” species which inhabit only a single area are also termed “endemic,” and tend to be highly vulnerable to population-reducing changes in their environment. Biodiversity hotspots are considered priorities for conservation if the area has a high rate of endemism as well as a notable and continual habitat loss (Noss et al., 2015). Preventing biodiversity loss is a complex and multi-level decision-making process about setting priorities and defining clear biodiversity protection areas. Biodiversity loss, or the loss of entire species or sub-populations in an area, can be driven by multiple processes, including land use changes, climate change, and the introduction of invasive species (Plexida et al. 2018). The Mediterranean Basin is one such hotspot, transecting multiple countries surrounding the Mediterranean Sea, including European, Middle Eastern, and North African countries with different systems of government and cultural perceptions of environmental resources and biodiversity. Furthermore, the basin is one the most species-rich biodiversity hotspots on Earth in terms of endemic vascular plants and has high rates of endemism for amphibians and fish, as well as being an important migration corridor for many bird species (Cuttelod et al., 2008). The hotspot is at high risk for continued biodiversity loss due to 53 several human-driven factors including population increase and government-level environmental policies (Grainger, 2003)

    Defect turbulence in inclined layer convection

    Full text link
    We report experimental results on the defect turbulent state of undulation chaos in inclined layer convection of a fluid withPrandtl number 1\approx 1. By measuring defect density and undulation wavenumber, we find that the onset of undulation chaos coincides with the theoretically predicted onset for stable, stationary undulations. At stronger driving, we observe a competition between ordered undulations and undulation chaos, suggesting bistability between a fixed-point attractor and spatiotemporal chaos. In the defect turbulent regime, we measured the defect creation, annihilation, entering, leaving, and rates. We show that entering and leaving rates through boundaries must be considered in order to describe the observed statistics. We derive a universal probability distribution function which agrees with the experimental findings.Comment: 4 pages, 5 figure

    Immunoadherence and complement in cancer-bearing mice.

    Get PDF
    Shortly after grafting of Ehrlich ascites carcinoma cells, the serum of tumour-bearing mice loses the capacity to mediate immunoadherence phenomena, because of a sharp decrease in the concentration of C3b and C3d, while the cellular receptors for such factors are unaffected by tumour growth. It is suggested that complement is consumed through the alternative pathway which is activated during the inflammatory responses accompanying tumour growth

    The Dilute Fermi Gas via Bogoliubov Theory

    Get PDF
    We study the ground state properties of interacting Fermi gases in the dilute regime, in three dimensions. We compute the ground state energy of the system, for positive interaction potentials. We recover a well-known expression for the ground state energy at second order in the particle density, which depends on the interaction potential only via its scattering length. The first proof of this result has been given by Lieb, Seiringer and Solovej (Phys Rev A 71:053605, 2005). In this paper, we give a new derivation of this formula, using a different method; it is inspired by Bogoliubov theory, and it makes use of the almost-bosonic nature of the low-energy excitations of the systems. With respect to previous work, our result applies to a more regular class of interaction potentials, but it comes with improved error estimates on the ground state energy asymptotics in the density

    Liposomes for intra-articular analgesic drug delivery in orthopedics: State-of-art and future perspectives. Insights from a systematic mini-review of the literature

    Get PDF
    Background and objectives: Liposomal structures are artificial vesicles composed of one or several lamellae of phospholipids which surround an inner aqueous core. Given the amphoteric nature of phospholipids, liposomes are promising systems for drug delivery. The present review provides an updated synthesis of the main techniques for the production of liposomes for orthopedic applications, focusing on the drawbacks of the conventional methods and on the advantages of high pressure techniques. Materials and Methods: Articles published in any language were systematically retrieved from two major electronic scholarly databases (PubMed/MEDLINE and Scopus) up to March 2020. Nine articles were retained based on the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) guidelines. Results: Liposome vesicles decrease the rate of inflammatory reactions after local injections, and significantly enhance the clinical effectiveness of anti-inflammatory agents providing controlled drug release, reducing toxic side effects. Conclusions: This review presents an update on the improvement in musculoskeletal ailments using liposome treatment

    Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations

    Get PDF
    Cardiac ryanodine receptor (RyR2) function is modulated by Ca2+ and Mg2+. To better characterize Ca2+ and Mg2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M2+: Mg2+, Ca2+, Sr2+, Ba2+) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca2+ or Sr2+. This activation was interfered by Mg2+ and Ba2+ acting at low affinity M2+-unspecific binding sites. When testing the effects of luminal M2+ as current carriers, all M2+ increased maximal RyR2 open probability (compared to Cs+), suggesting the existence of low affinity activating M2+-unspecific sites at the luminal surface. Responses to M2+ vary from channel to channel (heterogeneity). However, with luminal Ba2+or Mg2+, RyR2 were less sensitive to cytosolic Ca2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca2+or Sr2+). Kinetics of RyR2 with mixtures of luminal Ba2+/Ca2+ and additive action of luminal plus cytosolic Ba2+ or Mg2+ suggest luminal M2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca2+/Sr2+-specific sites, which stabilize high Po mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M2+ binding sites (specific for Ca2+ and unspecific for Ca2+/Mg2+) that dynamically modulate channel activity and gating status, depending on SR voltage

    Liposomes for Intra-Articular Analgesic Drug Delivery in Orthopedics: State-of-Art and Future Perspectives. Insights from a Systematic Mini-Review of the Literature.

    Get PDF
    Background and objectives: Liposomal structures are artificial vesicles composed of one or several lamellae of phospholipids which surround an inner aqueous core. Given the amphoteric nature of phospholipids, liposomes are promising systems for drug delivery. The present review provides an updated synthesis of the main techniques for the production of liposomes for orthopedic applications, focusing on the drawbacks of the conventional methods and on the advantages of high pressure techniques. Materials and Methods: Articles published in any language were systematically retrieved from two major electronic scholarly databases (PubMed/MEDLINE and Scopus) up to March 2020. Nine articles were retained based on the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines. Results: Liposome vesicles decrease the rate of inflammatory reactions after local injections, and significantly enhance the clinical effectiveness of anti-inflammatory agents providing controlled drug release, reducing toxic side effects. Conclusions: This review presents an update on the improvement in musculoskeletal ailments using liposome treatment
    corecore