73 research outputs found

    Rhinoclemmys areolata

    Get PDF
    Number of Pages: 2Integrative BiologyGeological Science

    Developing Quantitative Nondestructive Characterization of Nanomaterials: A Case Study on Sequential Infiltration Synthesis of Block Copolymers

    Get PDF
    The sequential infiltration synthesis (SIS) of inorganic materials in nanostructured block copolymer templates has rapidly progressed in the last few years to develop functional nanomaterials with controllable properties. To assist this rapid evolution, expanding the capabilities of nondestructive methods for quantitative characterization of the materials properties is required. In this paper, we characterize the SIS process on three model polymers with different infiltration profiles through ex situ quantification by reference-free grazing incidence X-ray fluorescence. More qualitative depth distribution results were validated by means of X-ray photoelectron spectroscopy and scanning transmission electron microscopy combined with energy-dispersive X-ray spectroscopy

    Hybrid Metrology for Nanostructured Optical Metasurfaces

    Get PDF
    Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths. However, the pursuit of large-scale manufacturing of metasurfaces with customizable functions presents challenges in controlling the dimensions and composition of the constituent dielectric materials. To address these challenges, the combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS), offers an alternative for fabrication of high-resolution dielectric nanostructures with tailored composition and optical functionalities. However, the absence of metrological techniques capable of providing precise and reliable characterization of the refractive index of dielectric nanostructures persists. This study introduces a hybrid metrology strategy that integrates complementary synchrotron-based traceable X-ray techniques to achieve comprehensive material characterization for the determination of the refractive index on the nanoscale. To establish correlations between material functionality and their underlying chemical, compositional and dimensional properties, TiO2 nanostructures model systems were fabricated by SIS of BCPs. The results from synchrotron-based analyses were integrated into physical models, serving as a validation scheme for laboratory-scale measurements to determine effective refractive indices of the nanoscale dielectric materials

    ABCC Multidrug Transporters in Childhood Neuroblastoma: Clinical and Biological Effects Independent of Cytotoxic Drug Efflux

    Get PDF
    Background Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux. Methods A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)-driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN1/−, 205 hMYCN+/1 mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth. Real-time quantitative polymerase chain reaction was used to examine the clinical significance of ABCC family gene expression in a large prospectively accrued cohort of patients (n = 209) with primary neuroblastomas. Kaplan-Meier survival analysis and Cox regression were used to test for associations with event-free and overall survival. Except where noted, all statistical tests were two-sided. Results Inhibition of ABCC1 statistically significantly inhibited neuroblastoma development in hMYCN transgenic mice (mean age for palpable tumor: treated mice, 47.2 days; control mice, 41.9 days; hazard ratio [HR] = 9.3, 95% confidence interval [CI] = 2.65 to 32; P < .001). Suppression of ABCC1 in vitro inhibited wound closure (P < .001) and clonogenicity (P = .006); suppression of ABCC4 enhanced morphological differentiation (P < .001) and inhibited cell growth (P < .001). Analysis of 209 neuroblastoma patient tumors revealed that, in contrast with ABCC1 and ABCC4, low rather than high ABCC3 expression was associated with reduced event-free survival (HR of recurrence or death = 2.4, 95% CI = 1.4 to 4.2; P = .001), with 23 of 53 patients with low ABCC3 expression experiencing recurrence or death compared with 31 of 155 patients with high ABCC3. Moreover, overexpression of ABCC3 in vitro inhibited neuroblastoma cell migration (P < .001) and clonogenicity (P = .03). The combined expression of ABCC1, ABCC3, and ABCC4 was associated with patients having an adverse event, such that of the 12 patients with the "poor prognosis” expression pattern, 10 experienced recurrence or death (HR of recurrence or death = 12.3, 95% CI = 6 to 27; P < .001). Conclusion ABCC transporters can affect neuroblastoma biology independently of their role in chemotherapeutic drug efflux, enhancing their potential as targets for therapeutic interventio

    Field effect transistors, sensors, and transparent conductive films

    No full text
    Nowadays, graphene oxide based materials and their derivatives can find application in many technological fields and devices. Among them, field emission transistor devices are certainly one of the most promising applications that exploit the unique electronic properties of this material. In addition, countless types of sensing devices based on graphene oxide materials were recently developed, due to the outstanding electrical conductivity and superior mechanical strength, as well as the exceptionally large amount of possibilities for environmental interaction due to the high number of reactive groups present on the large surface area available. Moreover, reduced graphene oxide is considered one of the best candidates for replacing the materials currently used as transparent conductive films for many applications, due to its electrical and mechanical properties, high carrier mobility and optical transparency in the visible range. This chapter summarizes the enormous potential for application of graphene oxide in these fields, with several examples from the current scientific literature. Finally, the possibility of fabricating memristor devices based on graphene oxide is also discussed

    Inkjet Printed Negative Supercapacitors: Synthesis of Polyaniline-Based Inks, Doping Agent Effect, and Advanced Electronic Devices Applications

    Get PDF
    Low frequency negative supercapacitors and high frequency negative capacitors are realized developing a polyaniline (PANI) based ink for piezoelectric inkjet printers, water based. PANI is synthesized by oxidation polymerization starting from the aniline dimer, thus avoiding the use of a toxic/mutagen substance such as aniline. In order to work in aqueous phase, the reverse addition of the dimer in the oxidative solution is made. The chlorinated emeraldine salt of PANI is produced and emeraldine base is prepared by dedoping. Two different doped PANI solutions are produced by solubilization of the emeraldine salt in dimethylsulphoxide and addition of respectively trifluorosulfonic acid and camporsulfonic acid, and then used as inks for the fabrication of inkjet-printed tracks of different geometries. The properties of inkjet-printed devices are characterized both in DC and AC regimes, showing very good performances under specific measurement conditions in terms of conductivity, as well as extremely interesting phenomena whose origin is still under debate, such as low frequency negative supercapacitance, high frequency negative capacitance and negative resistance. The realization of the highest negative supercapacitance realized so far, of -2.3 mF @ 30 Hz, corresponding to a specific mass capacity of -799 F g-1, is reported

    Flexible Electronics: Inkjet Printed Negative Supercapacitors: Synthesis of Polyaniline-Based Inks, Doping Agent Effect, and Advanced Electronic Devices Applications (Adv. Funct. Mater. 22/2014)

    Get PDF
    Flexible devices made of doped polyaniline (PANI) are directly deposited by inkjet printing on a plastic sheet (polyimide). The molecular arrangement of the functional material is also represented, showing its crystalline ordering. Inks are synthesized by A. Chiolerio and co-workers through a water-based process, avoiding the use of toxic/mutagenic substances normally employed in PANI production. On page 3375, These printed devices show the highest negative supercapacitance measured so far (−2.3 mF @ 30 Hz) corresponding to a specific mass capacity of −799 Fg−1
    • 

    corecore