42 research outputs found

    8-Hydroxy-2-Deoxyguanosine Levels and Cardiovascular Disease: A Systematic Review and Meta-Analysis of the Literature

    Get PDF
    Significance: 8-Hydroxy-2-deoxyguanosine (8-OHdG) is generated after the repair of ROS-mediated DNA damages and, thus, is one of the most widely recognized biomarkers of oxidative damage of DNA because guanosine is the most oxidized among the DNA nucleobases. In several pathological conditions, high urinary levels of oxidized DNA-derived metabolites have been reported (e.g., cancer, atherosclerosis, hypertension, and diabetes). Recent Advances: Even if published studies have shown that DNA damage is significantly associated with the development of atherosclerosis, the exact role of this damage in the onset and progression of this pathology is not fully understood, and the association of oxidative damage to DNA with cardiovascular disease (CVD) still needs to be more extensively investigated. We performed a meta-analysis of the literature to investigate the association among 8-OHdG levels and CVD. Critical Issues: Fourteen studies (810 CVD patients and 1106 controls) were included in the analysis. We found that CVD patients showed higher 8-OHdG levels than controls (SMD: 1.04, 95%CI: 0.61, 1.47, p < 0.001, I2 = 94%, p < 0.001). The difference was confirmed both in studies in which 8-OHdG levels were assessed in urine (MD: 4.43, 95%CI: 1.71, 7.15, p = 0.001) and in blood samples (MD: 1.42, 95%CI: 0.64, 2.21, p = 0.0004). Meta-regression models showed that age, hypertension, and male gender significantly impacted on the difference in 8-OHdG levels among CVD patients and controls. Future Directions: 8-OHdG levels are higher in patients with CVD than in controls. However, larger prospective studies are needed to test 8-OHdG as a predictor of CVD. Antioxid. Redox Signal. 24, 548-555

    An untargeted lipidomic analysis reveals depletion of several phospholipid classes in patients with familial hypercholesterolemia on treatment with Evolocumab

    Get PDF
    Familial hypercholesterolemia (FH) is caused by mutations in genes involved in low-density lipoprotein cholesterol (LDL-C) metabolism, including those for pro-protein convertase subtilisin/kexin type 9 (PCSK-9). The effect of PCSK-9 inhibition on the plasma lipidome has been poorly explored. Objective: Using an ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry method, the plasma lipidome of FH subjects before and at different time intervals during treatment with the PCSK-9 inhibitor Evolocumab was explored. Methods and Results: In 25 FH subjects, heterozygotes or compound heterozygotes for different LDL receptor mutations, untargeted lipidomic revealed significant reductions in 26 lipid classes belonging to phosphatidylcholine (PC), sphingomyelin (SM), ceramide (CER), cholesteryl ester (CE), triacylglycerol (TG) and phosphatidylinositol (PI). Lipid changes were graded between baseline and 4- and 12-week treatment. At 12-week treatment, five polyunsaturated diacyl PC, accounting for 38.6 to 49.2% of total PC at baseline; two ether/vinyl ether forms; seven SM; five CER and glucosyl/galactosyl-ceramide (HEX-CER) were reduced, as was the unsaturation index of HEX-CER and lactosyl—CER (LAC-CER). Although non quantitative modifications were observed in phosphatidylethanolamine (PE) during treatment with Evolocumab, shorter and more saturated fatty acyl chains were documented. Conclusions: Depletion of several phospholipid classes occurs in plasma of FH patients during treatment with the PCSK-9 inhibitor Evolocumab. The mechanism underlying these changes likely involves the de novo synthesis of SM and CER through the activation of the key enzyme sphingomyelin synthase by oxidized LDL and argues for a multifaceted system leading to vascular improvement in users of PCSK-9 inhibitor

    Treatment with PCSK9 inhibitors in patients with familial hypercholesterolemia lowers plasma levels of platelet-activating factor and its precursors: a combined metabolomic and lipidomic approach

    Get PDF
    13openInternationalItalian coauthor/editorIntroduction: Familial hypercholesterolemia (FH) is characterized by extremely high levels of circulating low-density lipoprotein cholesterol (LDL-C) and is caused by mutations of genes involved in LDL-C metabolism, including LDL receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/Kexin type 9 (PCSK9). Accordingly, PCSK9 inhibitors (PCSK9i) are effective in LDL-C reduction. However, no data are available on the pleiotropic effect of PCSK9i. To this end, we performed an untargeted metabolomics approach to gather a global view on changes in metabolic pathways in patients receiving treatment with PCSK9i. Methods: Twenty-five FH patients starting treatment with PCSK-9i were evaluated by an untargeted metabolomics approach at baseline (before PCSK9i treatment) and after 12 weeks of treatment. Results: All the 25 FH subjects enrolled were on maximal tolerated lipid-lowering therapy prior to study entry. After a 12 week treatment with PCSK9i, we observed an expected significant reduction in LDL-cholesterol levels (from 201.0 ± 69.5 mg/dL to 103.0 ± 58.0 mg/dL, p < 0.001). The LDL-C target was achieved in 36% of patients. After peak validation and correction, after 12 weeks of PCSK9i treatment as compared to baseline, we observed increments in creatine (p-value = 0.041), indole (p-value = 0.045), and indoleacrylic acid (p-value= 0.045) concentrations. Conversely, significant decreases in choline (p-value = 0.045) and phosphatidylcholine (p-value < 0.01) together with a reduction in platelet activating factor (p-value = 0.041) were observed. Conclusions: Taking advantage of untargeted metabolomics, we first provided evidence of concomitant reductions in inflammation and platelet activation metabolites in FH patients receiving a 12 week treatment with PCSK9iopenDi Minno, Alessandro; Orsini, Roberta Clara; Chiesa, Mattia; Cavalca, Viviana; Calcaterra, Ilenia; Tripaldella, Maria; Anesi, Andrea; Fiorelli, Susanna; Eligini, Sonia; Colombo, Gualtiero I; Tremoli, Elena; Porro, Benedetta; Di Minno, Matteo Nicola DarioDi Minno, A.; Orsini, R.C.; Chiesa, M.; Cavalca, V.; Calcaterra, I.; Tripaldella, M.; Anesi, A.; Fiorelli, S.; Eligini, S.; Colombo, G.I.; Tremoli, E.; Porro, B.; Di Minno, M.N.D

    Untargeted metabolomics to go beyond the canonical effect of acetylsalicylic acid

    Get PDF
    15openInternationalItalian coauthor/editorGiven to its ability to irreversibly acetylate the platelet cyclooxygenase-1 enzyme, acetylsalicylic acid (ASA) is successfully employed for the prevention of cardiovascular disease. Recently, an antitumoral effect of ASA in colorectal cancer has been increasingly documented. However, the molecular and metabolic mechanisms by which ASA exerts such effect is largely unknown. Using a new, untargeted liquid chromatography–mass spectrometry approach, we have analyzed urine samples from seven healthy participants that each ingested 100 mg of ASA once daily for 1 week. Of the 2007 features detected, 25 metabolites differing after ASA ingestion (nominal p 1) were identified, and pathway analysis revealed low levels of glutamine and of metabolites involved in histidine and purine metabolisms. Likewise, consistent with an altered fatty acid β-oxidation process, a decrease in several short- and medium-chain acyl-carnitines was observed. An abnormal β-oxidation and a lower than normal glutamine availability suggests reduced synthesis of acetyl-Co-A, as they are events linked to one another and experimentally related to ASA antiproliferative effects. While giving an example of how untargeted metabolomics allows us to explore new clinical applications of drugs, the present data provide a direction to be pursued to test the therapeutic effects of ASA—e.g., the antitumoral effect—beyond cardiovascular protectionopenDi Minno, Alessandro; Porro, Benedetta; Turnu, Linda; Manega, Chiara Maria; Eligini, Sonia; Barbieri, Simone; Chiesa, Mattia; Poggio, Paolo; Squellerio, Isabella; Anesi, Andrea; Fiorelli, Susanna; Caruso, Donatella; Veglia, Fabrizio; Cavalca, Viviana; Tremoli, ElenaDi Minno, A.; Porro, B.; Turnu, L.; Manega, C.M.; Eligini, S.; Barbieri, S.; Chiesa, M.; Poggio, P.; Squellerio, I.; Anesi, A.; Fiorelli, S.; Caruso, D.; Veglia, F.; Cavalca, V.; Tremoli, E

    Nitric Oxide Synthetic Pathway in Patients with Microvascular Angina and Its Relations with Oxidative Stress

    Get PDF
    A decreased nitric oxide (NO) bioavailability and an increased oxidative stress play a pivotal role in different cardiovascular pathologies. As red blood cells (RBCs) participate in NO formation in the bloodstream, the aim of this study was to outline the metabolic profile of L-arginine (Arg)/NO pathway and of oxidative stress status in RBCs and in plasma of patients with microvascular angina (MVA), investigating similarities and differences with respect to coronary artery disease (CAD) patients or healthy controls (Ctrl). Analytes involved in Arg/NO pathway and the ratio of oxidized and reduced forms of glutathione were measured by LC-MS/MS. The arginase and the NO synthase (NOS) expression were evaluated by immunofluorescence staining. RBCs from MVA patients show increased levels of NO synthesis inhibitors, parallel to that found in plasma, and a reduction of NO synthase expression. When summary scores were computed, both patient groups were associated with a positive oxidative score and a negative NO score, with the CAD group located in a more extreme position with respect to Ctrl. This finding points out to an impairment of the capacity of RBCs to produce NO in a pathological condition characterized mostly by alterations at the microvascular bed with no significant coronary stenosis

    An Optimized MRM-Based Workflow of the l-Arginine/Nitric Oxide Pathway Metabolites Revealed Disease- and Sex-Related Differences in the Cardiovascular Field

    No full text
    Clinical data indicate that low circulating l-homoarginine (HArg) concentrations are associated with cardiovascular (CV) disease, CV mortality, and all-cause mortality. A high number of LC-based analytical methods for the quantification of HArg, in combination with the l-arginine (Arg)-related pathway metabolites, have been reported. However, these methods usually consider a limited panel of analytes. Thus, in order to achieve a comprehensive picture of the Arg metabolism, we described an improved targeted metabolomic approach based on a multiple reaction monitoring (MRM) mass spectrometry method for the simultaneous quantification of the Arg/nitric oxide (NO) pathway metabolites. This methodology was then employed to quantify the plasma concentrations of these analytes in a cohort of individuals with different grades/types of coronary artery disease (CAD) in order to increase knowledge about the role of HArg and its associated metabolites in the CV field. Our results showed that the MRM method here implemented is suitable for the simultaneous assessment of a wide panel of amino acids involved in the Arg/NO metabolic pathway in plasma samples from patients with CV disease. Further, our findings highlighted an impairment of the Arg/NO metabolic pathway, and suggest a sex-dependent regulation of this metabolic route

    An Optimized MRM-Based Workflow of the <span style="font-variant: small-caps">l</span>-Arginine/Nitric Oxide Pathway Metabolites Revealed Disease- and Sex-Related Differences in the Cardiovascular Field

    No full text
    Clinical data indicate that low circulating l-homoarginine (HArg) concentrations are associated with cardiovascular (CV) disease, CV mortality, and all-cause mortality. A high number of LC-based analytical methods for the quantification of HArg, in combination with the l-arginine (Arg)-related pathway metabolites, have been reported. However, these methods usually consider a limited panel of analytes. Thus, in order to achieve a comprehensive picture of the Arg metabolism, we described an improved targeted metabolomic approach based on a multiple reaction monitoring (MRM) mass spectrometry method for the simultaneous quantification of the Arg/nitric oxide (NO) pathway metabolites. This methodology was then employed to quantify the plasma concentrations of these analytes in a cohort of individuals with different grades/types of coronary artery disease (CAD) in order to increase knowledge about the role of HArg and its associated metabolites in the CV field. Our results showed that the MRM method here implemented is suitable for the simultaneous assessment of a wide panel of amino acids involved in the Arg/NO metabolic pathway in plasma samples from patients with CV disease. Further, our findings highlighted an impairment of the Arg/NO metabolic pathway, and suggest a sex-dependent regulation of this metabolic route

    Oxidative Stress and Arginine/Nitric Oxide Pathway in Red Blood Cells Derived from Patients with Prediabetes

    No full text
    The effects of the oral glucose tolerance test (OGTT) on red blood cells (RBCs) have not been thoroughly investigated, although it is known that the ingestion of 75 g of glucose during OGTT results in a systemic state of inflammation and oxidative stress. Therefore, we evaluated the effect of OGTT on oxidative stress and L-arginine/Nitric Oxide (L-Arg/NO) metabolic pathway in RBCs obtained from patients with prediabetes. Blood samples were collected from all participants before (T0) and at 10 (T1), 20 (T2), 30 (T3), 60 (T4), 90 (T5), 120 (T6), 150 (T7), and 180 (T8) minutes after glucose loading. Results showed a significant increase in oxidative stress status characterized by a rise in the GSSG/GSH ratio at T4 and T6 that increased in parallel with a reduction of NO production in RBCs. In addition, in this time frame, increased exposure of phosphatidylserine on RBCs membrane was observed. These metabolic modifications were rescued at T8, together with an increase in activated RBC NO synthase expression. These findings provide a possible explanation of the phenomena occurring after glucose loading and suggest that, even in the early stages of diabetes, it may be important to avoid acute variations in glycemia in order to prevent diabetic complications

    Impact of Oxidative Stress and Protein S-Glutathionylation in Aortic Valve Sclerosis Patients with Overt Atherosclerosis

    No full text
    Aortic valve sclerosis (AVSc) is characterized by non-uniform thickening of the leaflets without hemodynamic changes. Endothelial dysfunction, also caused by dysregulation of glutathione homeostasis expressed as ratio between its reduced (GSH) and its oxidised form (GSSG), could represent one of the pathogenic triggers of AVSc. We prospectively enrolled 58 patients with overt atherosclerosis and requiring coronary artery bypass grafting (CABG). The incidence of AVSc in the studied population was 50%. The two groups (No-AVSc and AVSc) had similar clinical characteristics. Pre-operatively, AVSc group showed significantly lower GSH/GSSG ratio than No-AVSc group (p = 0.02). Asymmetric dimethylarginine (ADMA) concentration was significantly higher in AVSc patients compared to No-AVSc patients (p &lt; 0.0001). Explanted sclerotic aortic valves presented a significantly increased protein glutathionylation (Pr-SSG) than No-AVSc ones (p = 0.01). In vitro, inhibition of glutathione reductase caused &#946;-actin glutathionylation, activation of histone 2AX, upregulation of &#945;2 smooth muscle actin (ACTA2), downregulation of platelet and endothelial cell adhesion molecule 1 (PECAM1) and cadherin 5 (CDH5). In this study, we showed for the first time that the dysregulation of glutathione homeostasis is associated with AVSc. We found that Pr-SSG is increased in AVSc leaflets and it could lead to EndMT via DNA damage. Further studies are warranted to elucidate the causal role of Pr-SSG in aortic valve degeneration

    Effects of Mediterranean Diet or Low-Fat Diet on Blood Fatty Acids in Patients with Coronary Heart Disease. A Randomized Intervention Study

    No full text
    The Mediterranean diet (MD) prevents cardiovascular disease by different putative mechanisms, including modifications in the blood fatty acid (FA) profile. Polytherapy for secondary cardiovascular prevention might mask the effect of MD on the FA profile. This study was aimed to assess whether MD, in comparison with a low-fat diet (LFD), favorably modifies the blood FA profile in patients with coronary heart disease (CHD) on polytherapy. One hundred and twenty patients with a recent history of coronary stenting, randomized to MD or to LFD, completed 3 months of this open-label dietary intervention study. Diet Mediterranean-ness was evaluated using the Mediterranean Diet Adherence Screener (MeDAS) score. Both diets significantly reduced saturated FA (p &lt; 0.01). Putative favorable changes in total n-3 FA (p = 0.03) and eicosapentaenoic acid plus docosahexaenoic acid (EPA + DHA; p = 0.04) were significantly larger with MD than with LFD. At 3 months, in the whole cohort, the MeDAS score correlated inversely with palmitic acid (R = −0.21, p = 0.02), and with palmitoleic acid (R = −0.32, p = 0.007), and positively with total n-3 FA (R = 0.19, p = 0.03), EPA (R = 0.28, p = 0.002), and EPA + DHA (R = 0.21, p = 0.02). In CHD patients on polytherapy, both MD and LFD shift FA blood composition towards a healthier profile, with a more favorable effect of MD on omega−3 levels
    corecore