6 research outputs found

    The interplay between tamoxifen and endoxifen plasma concentrations and coagulation parameters in patients with primary breast cancer

    Get PDF
    Background: Tamoxifen is an effective treatment for primary breast cancer but increases the risk for venous thromboembolism. Tamoxifen decreases anticoagulant proteins, including antithrombin (AT), protein C (PC) and tissue factor (TF) pathway inhibitor, and enhances thrombin generation (TG). However, the relation between plasma concentrations of both tamoxifen and its active metabolite endoxifen and coagulation remains unknown. Methods: Tamoxifen and endoxifen were measured in 141 patients from the prospective open-label intervention TOTAM-study after 3 months (m) and 6 m of tamoxifen treatment. Levels of AT and PC, the procoagulant TF, and TG parameters were determined at both timepoints if samples were available (n = 53–135 per analysis). Levels of coagulation proteins and TG parameters were correlated and compared between: 1) quartiles of tamoxifen and endoxifen levels, and 2) 3 m and 6 m of treatment. Results: At 3 m, levels of AT, PC, TF and TG parameters were not associated with tamoxifen nor endoxifen levels. At 6 m, median TF levels were lower in patients in the 3rd (56.6 [33] pg/mL), and 4th (50.1 [19] pg/mL) endoxifen quartiles compared to the 1st (lowest) quartile (76 [69] pg/mL) (P=0.027 and P=0.018, respectively), but no differences in anticoagulant proteins or TG parameters were observed. An increase in circulating TF levels (3 m: 46.0 [15] versus 6 m: 54.4 [39] pg/mL, P &lt; 0.001) and TG parameters was observed at the 6 m treatment timepoint, while AT and PC levels remained stable.Conclusions: Our results indicate that higher tamoxifen and endoxifen levels are not correlated with an increased procoagulant state, suggesting tamoxifen dose escalation does not further promote hypercoagulability.</p

    The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo

    Get PDF
    : Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non-Homologous End-Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS

    Effect of scalp cooling on the pharmacokinetics of paclitaxel

    No full text
    Chemotherapy-induced alopecia (CIA), a side effect with high impact, can be prevented by cooling the scalp during the administration of some cytotoxic drugs. However, the effects of this prolonged scalp cooling on the pharmacokinetics of chemotherapy have never been investigated. In this study, we compared the pharmacokinetics of the widely used chemotherapeutic agent paclitaxel (weekly dose of 80–100 mg/m2 ) in female patients with solid tumors using concomitant scalp cooling (n = 14) or not (n = 24). Blood samples were collected in all patients for pharmacokinetic analyses up to 6 h after one course of paclitaxel administration. The primary endpoint was the clearance (L/h) of paclitaxel. Paclitaxel clearance—expressed as relative difference in geometric means—was 6.8% (90% CI: −16.7% to 4.4%) lower when paclitaxel was administered with concomitant scalp cooling versus paclitaxel infusions without scalp cooling. Within the subgroup of patients using scalp cooling, paclitaxel clearance was not statistically significantly different between patients with CIA (alopecia grade 1 or 2) and those without CIA. Hence, scalp cooling did not negatively influence the clearance of paclitaxel treatment

    Effect of Scalp Cooling on the Pharmacokinetics of Paclitaxel

    Get PDF
    Simple Summary This study investigated the correlation between scalp cooling used to prevent chemotherapy-induced alopecia and the pharmacokinetics of paclitaxel in female cancer patients with a solid tumor. In a prospective cohort study, 14 patients who were treated with weekly paclitaxel and scalp cooling were able to undergo pharmacokinetic sampling of paclitaxel during one cycle of treatment. In comparison to a control cohort of 24 patients treated with weekly paclitaxel without scalp cooling, our data showed that scalp cooling used concomitantly with one course of paclitaxel did not reduce or increase the clearance of paclitaxel. Therefore, it is unlikely that scalp cooling influences paclitaxel efficacy or toxicity. Finally, despite scalp cooling, half of the patients in our study developed a form of hair loss. Importantly, neither an association with difference in paclitaxel clearance nor change in hair loss was found. Chemotherapy-induced alopecia (CIA), a side effect with high impact, can be prevented by cooling the scalp during the administration of some cytotoxic drugs. However, the effects of this prolonged scalp cooling on the pharmacokinetics of chemotherapy have never been investigated. In this study, we compared the pharmacokinetics of the widely used chemotherapeutic agent paclitaxel (weekly dose of 80-100 mg/m(2)) in female patients with solid tumors using concomitant scalp cooling (n = 14) or not (n = 24). Blood samples were collected in all patients for pharmacokinetic analyses up to 6 h after one course of paclitaxel administration. The primary endpoint was the clearance (L/h) of paclitaxel. Paclitaxel clearance-expressed as relative difference in geometric means-was 6.8% (90% CI: -16.7% to 4.4%) lower when paclitaxel was administered with concomitant scalp cooling versus paclitaxel infusions without scalp cooling. Within the subgroup of patients using scalp cooling, paclitaxel clearance was not statistically significantly different between patients with CIA (alopecia grade 1 or 2) and those without CIA. Hence, scalp cooling did not negatively influence the clearance of paclitaxel treatment
    corecore