39 research outputs found

    Radioresistance in rhabdomyosarcomas: much more than a question of dose

    Get PDF
    Management of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, frequently accounting the genitourinary tract is complex and requires a multimodal therapy. In particular, as a consequence of the advancement in dose conformity technology, radiation therapy (RT) has now become the standard therapeutic option for patients with RMS. In the clinical practice, dose and timing of RT are adjusted on the basis of patients' risk stratification to reduce late toxicity and side effects on normal tissues. However, despite the substantial improvement in cure rates, local failure and recurrence frequently occur. In this review, we summarize the general principles of the treatment of RMS, focusing on RT, and the main molecular pathways and specific proteins involved into radioresistance in RMS tumors. Specifically, we focused on DNA damage/repair, reactive oxygen species, cancer stem cells, and epigenetic modifications that have been reported in the context of RMS neoplasia in both in vitro and in vivo studies. The precise elucidation of the radioresistance-related molecular mechanisms is of pivotal importance to set up new more effective and tolerable combined therapeutic approaches that can radiosensitize cancer cells to finally ameliorate the overall survival of patients with RMS, especially for the most aggressive subtypes

    Field-effect and capacitive properties of water-gated transistors based on polythiophene derivatives

    Get PDF
    Recently, water-gated organic field-effect transistors (WGOFET) have been intensively studied for their application in the biological field. Surprisingly, a very limited number of conjugated polymers have been reported so far. Here, we systematically explore a series of polythiophene derivatives, presenting different alkyl side chains lengths and orientation, and characterized by various morphologies: comparative evaluation of their performances allows highlighting the critical role played by alkyl side chains, which significantly affects the polymer/water interface capacitance. Reported results provide useful guidelines towards further development of WGOFETs and represent a step forward in the understanding of the polymer/water interface phenomena

    Building Bridges to Enhance Degree and Career Opportunities

    Get PDF
    External pressures on higher education are challenging universities to focus on preparing graduates with more broadly designed curricula that contain translatable skills and include interdisciplinary knowledge. In this presentation, the process of identifying and creating new academic programs based on unique student goals and contemporary employment needs will be discussed

    The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo

    Get PDF
    Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non‐Homologous End‐Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS

    The interplay between tamoxifen and endoxifen plasma concentrations and coagulation parameters in patients with primary breast cancer

    Get PDF
    Background: Tamoxifen is an effective treatment for primary breast cancer but increases the risk for venous thromboembolism. Tamoxifen decreases anticoagulant proteins, including antithrombin (AT), protein C (PC) and tissue factor (TF) pathway inhibitor, and enhances thrombin generation (TG). However, the relation between plasma concentrations of both tamoxifen and its active metabolite endoxifen and coagulation remains unknown. Methods: Tamoxifen and endoxifen were measured in 141 patients from the prospective open-label intervention TOTAM-study after 3 months (m) and 6 m of tamoxifen treatment. Levels of AT and PC, the procoagulant TF, and TG parameters were determined at both timepoints if samples were available (n = 53–135 per analysis). Levels of coagulation proteins and TG parameters were correlated and compared between: 1) quartiles of tamoxifen and endoxifen levels, and 2) 3 m and 6 m of treatment. Results: At 3 m, levels of AT, PC, TF and TG parameters were not associated with tamoxifen nor endoxifen levels. At 6 m, median TF levels were lower in patients in the 3rd (56.6 [33] pg/mL), and 4th (50.1 [19] pg/mL) endoxifen quartiles compared to the 1st (lowest) quartile (76 [69] pg/mL) (P=0.027 and P=0.018, respectively), but no differences in anticoagulant proteins or TG parameters were observed. An increase in circulating TF levels (3 m: 46.0 [15] versus 6 m: 54.4 [39] pg/mL, P &lt; 0.001) and TG parameters was observed at the 6 m treatment timepoint, while AT and PC levels remained stable.Conclusions: Our results indicate that higher tamoxifen and endoxifen levels are not correlated with an increased procoagulant state, suggesting tamoxifen dose escalation does not further promote hypercoagulability.</p

    Reduced Environmental Dose Rates Are Responsible for the Increased Susceptibility to Radiation‐Induced DNA Damage in Larval Neuroblasts of Drosophila Grown inside the LNGS Underground Laboratory

    No full text
    A large amount of evidence from radiobiology studies carried out in Deep Underground Laboratories support the view that environmental radiation may trigger biological mechanisms that enable both simple and complex organisms to cope with genotoxic stress. In line with this, here we show that the reduced radiation background of the LNGS underground laboratory renders Drosophila neuroblasts more sensitive to ionizing radiation‐induced (but not to spontaneous) DNA breaks compared to fruit flies kept at the external reference laboratory. Interestingly, we demonstrate that the ionizing radiation sensitivity of flies kept at the LNGS underground laboratory is rescued by increasing the underground gamma dose rate to levels comparable to the low‐LET reference one. This finding provides the first direct evidence that the modulation of the DNA damage response in a complex multicellular organism is indeed dependent on the environmental dose rate

    Field-effect and capacitive properties of water-gated transistors based on polythiophene derivatives

    No full text
    Recently, water-gated organic field-effect transistors (WGOFET) have been intensively studied for their application in the biological field. Surprisingly, a very limited number of conjugated polymers have been reported so far. Here, we systematically explore a series of polythiophene derivatives, presenting different alkyl side chains lengths and orientation, and characterized by various morphologies: comparative evaluation of their performances allows highlighting the critical role played by alkyl side chains, which significantly affects the polymer/water interface capacitance. Reported results provide useful guidelines towards further development of WGOFETs and represent a step forward in the understanding of the polymer/water interface phenomena

    The role of an accurate diagnosis of inherited thrombocytopenia as the basis for an effective treatment. A case of MYH9 syndrome treated with a TPO-RA

    No full text
    MYH9‐related platelet disorders (MYH9‐RDs) are autosomal‐dominant, syndromic thrombocytopenias caused by mutations of MYH9, the gene encoding for the non‐muscular myosin heavy chain IIA (NMMHC‐IIA). All affected individuals present congenital macrothrombocytopenia, giant platelets and NMMHC‐IIA inclusions in the cytoplasm of granulocytes. Most patients develop late‐onset, extra‐haematological manifestations, namely renal failure, sensorineural hearing loss, presenile cataract and elevation of liver enzymes; in some cases, the thrombocytopenia remains the only feature of the disease. The diagnosis is based on the detection of granulocyte inclusion bodies on blood smears, immunofluorescence analyses and/or the identification of a heterozygous pathogenic MYH9 variant
    corecore