74 research outputs found

    Integration of white rot mushroom cultivation to enhance biogas production from oil palm kernel pulp by solid-state digestion

    Get PDF
    Solid-state fermentation is one of the promising technologies for biogas production because of its low water footprint and solid output which is potentially used in fuel or agricultural applications. Oil palm kernel pulp (OPKP) is a by-product generated from the extraction of palm kernel oil from the mesocarp of the oil palm tree and usually contains a large amount of lignocellulose and moderate protein content, which makes it suitable for use as a mushroom substrate. Cultivation of white rot mushrooms on lignocellulose may enhance its biodegradation by biodelignification. In this study, the incorporation of the cultivation of edible white rot mushrooms, Pluerotus ostreatus and Pleurotus pulmonarius, to enhance biogas production by solid-state digestion was studied. The biological efficiency of mushroom production from the OPKP substrate of P. ostreatus and P. pulmonarius was 49.81% ± 11.28% and 46.94% ± 13.49%, respectively, corresponding to the substrate weight loss of 15.87% and 13.92%. After 30 days, methane yield obtained through the solid-state digestion of P. ostreatus- and P. pulmonarius-treated OPKP substrates was increased to 98.11 mL/gVS (191%) and 101.10 mL/gVS (197%), respectively, compared with the untreated OPKP substrate. In consideration of energy loss during the biological conversion, the calorific values of the OPKP substrate, P. ostreatus-treated OPKP substrate, and P. pulmonarius-treated OPKP substrate were 11.03 ± 0.71 kJ/g, 9.30 ± 0.23 kJ/g, and 8.83 ± 0.70 kJ/g, respectively, while those of the digestion residues of P. ostreatus and P. pulmonarius-treated OPKP substrates were 8.45 ± 0.13 kJ/g and 8.55 ± 0.11 kJ/g, respectively

    ‘Tablet-in-syringe’: A novel dosing device for dysphagic patients containing fast disintegrating tablets fabricated using semi-solid extrusion 3D printing

    Get PDF
    With the ability to fabricate personalized dosage forms and considerably shorter manufacturing time, semisolid extrusion (SSE) 3D printing has rapidly grown in popularity in recent years as a novel, versatile manufacturing method that powers a wide range of applications in the pharmaceutical field. In this work, the feasibility of using SSE 3D printing to fabricate fast-disintegrating tablets (FDTs) that are pre-filled in dosing syringes was evaluated. The novel design approach, ‘tablet-in-syringe’, was aimed to ease the oral drug administration and improve the dosing accuracy for dysphagic patients. The effect of varying polymer (hydroxypropyl methylcellulose E15) concentrations and printing parameters (e.g., extrusion rate) on dimensional accuracy, physicochemical properties, disintegration time, and content uniformity of 3D-printed FDTs was studied. An overall comparison of results demonstrated that the best FDT formulation among those developed was with a polymer:drug ratio (w/w) of 1:30, printed at extrusion rate of 3.5 μL/s. The diameter of printed filaments of this formulation was observed to be similar to the nozzle diameter (22G), proving that good printing accuracy was achieved. This FDTs also had the fastest disintegration time (0.81 ± 0.14 min) and a drug (phenytoin sodium, as the model drug) content uniformity that met pharmacopeial specifications. Although the flow characteristics of the dissolved formulation still need improvement, our findings suggested that the novel ‘tablet-in-syringe’ could potentially be considered as a promising fast-disintegrating drug delivery system that can be personalized and manufactured at—or close to—the point of care for dysphagic patients using SSE

    Characterization of hydrophilic polymers as a syringe extrusion 3D printing material for orodispersible film

    Get PDF
    The application of hydrophilic polymers in designing and three-dimensional (3D) printing of pharmaceutical products in various dosage forms has recently been paid much attention. Use of hydrophilic polymers and syringe extrusion 3D printing technology in the fabrication of orodispersible films (ODFs) might hold great potential in rapid drug delivery, personalized medicine, and manufacturing time savings. In this study, the feasibility of 3D-printed ODFs fabrication through a syringe extrusion 3D printing technique and using five different hydrophilic polymers (e.g., hydroxypropyl methylcellulose E15, hydroxypropyl methylcellulose E50, high methoxyl pectin, sodium carboxymethylcellulose, and hydroxyethylcellulose) as film-forming polymers and printing materials has been investigated. Rheology properties and printability of printing gels and physicochemical and mechanical properties of 3D-printed ODFs were evaluated. Amongst the investigated hydrophilic polymers, sodium carboxymethylcellulose at a concentration of 5% w/v (SCMC-5) showed promising results with a good printing resolution and accurate dimensions of the 3D-printed ODFs. In addition, SCMC-5 3D-printed ODFs exhibited the fastest disintegration time within 3 s due to high wettability, roughness and porosity on the surface. However, the results of the mechanical properties study showed that SCMC-5 3D printed ODFs were rigid and brittle, thus requiring special packaging to prevent them from any damage before practical use

    Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide

    Get PDF
    This research aimed to optimize pressure (10-20 MPa) and temperature (45-60 °C) conditions for supercritical fluid extraction (SFE) of Makwaen pepper (Zanthoxylum myriacanthum) extract (ME) in comparison to conventional hydro-distillation extraction. Various quality parameters, including yield, total phenolic compounds, antioxidants, and antimicrobial activities of the extracts, were assessed and optimized using a central composite design. The optimal SFE conditions were found to be 20 MPa at 60 °C, which resulted in the highest yield (19%) and a total phenolic compound content of 31.54 mg GAE/mL extract. IC50 values for DPPH and ABTS assays were determined to be 26.06 and 19.90 μg/mL extract, respectively. Overall, the ME obtained through SFE exhibited significantly better physicochemical and antioxidant properties compared to ME obtained through hydro-distillation extraction. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that beta-pinene was the major component in the ME obtained through SFE (23.10%), followed by d-limonene, alpha-pinene, and terpinen-4-ol at concentrations of 16.08, 7.47, and 6.34%, respectively. On the other hand, the hydro-distillation-extracted ME showed stronger antimicrobial properties than the SFE-extracted ME. These findings suggest that both SFE and hydro-distillation have the potential for extracting Makwaen pepper, depending on the intended purpose of use

    Natural ingredients and probiotics for lowering cholesterol and saturated fat in dairy products: an updated review

    Get PDF
    Dairy products play a crucial role in ensuring healthy lives and promoting the well-being of people. However, they normally contain high levels of saturated fat and cholesterol which are related to the risk of noncommunicable diseases and other health issues. Our review focuses on the effectiveness of added natural ingredients and probi-otics in dairy products for replacing or lowering cholesterol and saturated fat. This narrative review was concep-tualized to describe: (i) natural ingredients for cholesterol and saturated fat substitution, and (ii) probiotics for lowering both cholesterol and saturated fat. Promising techniques for cholesterol and saturated fat replacement by healthy plant oils, carbohydrate, and protein co-products and their effect on product qualities are discussed. In addition, various probiotics inoculated in dairy products exhibiting effect on saturated fat and cholesterol are also addressed

    The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: Potential uses for enhancing immune systems and preventing viruses

    Get PDF
    Viral infections may cause serious human diseases. For instance, the recent appearance of the novel virus, SARS-CoV-2, causing COVID-19, has spread globally and is a serious public health concern. The consumption of healthy, proper, functional, and nutrient-rich foods has an important role in enhancing an individual's immune system and preventing viral infections. Several polysaccharides from natural sources such as algae, bacteria, and fungi have been considered as generally recognized as safe (GRAS) by the US Food and Drug Administration. They are safe, low-toxicity, biodegradable, and have biological activities. In this review, the bioactive polysaccharides derived from various microorganisms, including bacteria, fungi, and algae were evaluated. Antiviral mechanisms of these polysaccharides were discussed. Finally, the potential use of microbial and algal polysaccharides as an antiviral and immune boosting strategy was addressed. The microbial polysaccharides exhibited several bioactivities, including antioxidant, anti-inflammatory, antimicrobial, antitumor, and immunomodulatory activities. Some microbes are able to produce sulfated polysaccharides, which are wellknown to exert a board spectrum of biological activities, especially antiviral properties. Microbial polysaccharide can inhibit various viruses using different mechanisms. Furthermore, these microbial polysaccharides are also able to modulate immune responses to prevent and/or inhibit virus infections. There are many molecular factors influencing their bioactivities, e.g., functional groups, conformations, compositions, and molecular weight. At this stage of development, microbial polysaccharides will be used as adjuvants, nutrient supplements, and for drug delivery to prevent several virus infections, especially SARS-CoV-2 infection

    Reaction mechanism and mechanical property improvement of Poly(Lactic Acid) reactive blending with Epoxy Resin

    Get PDF
    Polylactic acid (PLA) was melt-blended with epoxy resin to study the effects of the reaction on the mechanical and thermal properties of the PLA. The addition of 0.5% (wt/wt) epoxy to PLA increased the maximum tensile strength of PLA (57.5 MPa) to 67 MPa, whereas the 20% epoxy improved the elongation at break to 12%, due to crosslinking caused by the epoxy reaction. The morphology of the PLA/epoxy blends showed epoxy nanoparticle dispersion in the PLA matrix that presented a smooth fracture surface with a high epoxy content. The glass transition temperature of PLA decreased with an increasing epoxy content owing to the partial miscibility between PLA and the epoxy resin. The Vicat softening temperature of the PLA was 59 °C and increased to 64.6 °C for 0.5% epoxy. NMR confirmed the reaction between the -COOH groups of PLA and the epoxy groups of the epoxy resin. This reaction, and partial miscibility of the PLA/epoxy blend, improved the interfacial crosslinking, morphology, thermal properties, and mechanical properties of the blends

    High efficiency in vitro wound healing of dictyophora indusiata extracts via anti-inflammatory and collagen stimulating (MMP-2 inhibition) mechanisms

    Get PDF
    Dictyophora indusiata or Phallus indusiatus is widely used as not only traditional medicine, functional foods, but also, skin care agents. Biological activities of the fruiting body from D. indusiata were widely reported, while the studies on the application of immature bamboo mushroom extracts were limited especially in the wound healing effect. Wound healing process composed of 4 stages including hemostasis, inflammation, proliferation, and remodelling. This study divided the egg stage of bamboo mushroom into 3 parts: peel and green mixture (PGW), core (CW), and whole mushroom (WW). Then, aqueous extracts were investigated for their nucleotide sequencing, biological compound contents, and wound healing effect. The anti-inflammatory determination via the levels of cytokine releasing from macrophages, and the collagen stimulation activity on fibroblasts by matrix metalloproteinase-2 (MMP-2) inhibitory activity were determined to serve for the wound healing process promotion in the stage 2-4 (wound inflammation, proliferation, and remodelling of the skin). All D. indusiata extracts showed good antioxidant potential, significantly anti-inflammatory activity in the decreasing of the nitric oxide (NO), interleukin-1 (IL-1), interleukin-1 (IL-6), and tumour necrosis factor-α (TNF-α) secretion from macrophage cells (p < 0.05), and the effective collagen stimulation via MMP-2 inhibition. In particular, CW extract containing high content of catechin (68.761 ± 0.010 mg/g extract) which could significantly suppress NO secretion (0.06 ± 0.02 µmol/L) better than the standard anti-inflammatory drug diclofenac (0.12 ± 0.02 µmol/L) and their MMP-2 inhibition (41.33 ± 9.44%) was comparable to L-ascorbic acid (50.65 ± 2.53%). These findings support that CW of D. indusiata could be an essential natural active ingredient for skin wound healing pharmaceutical products

    Morphology, Mechanical, and Water Barrier Properties of Carboxymethyl Rice Starch Films: Sodium Hydroxide Effect

    No full text
    Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr) treated with sodium hydroxide (NaOH) at 10&ndash;50% w/v. The objective of this research was to determine the effect of NaOH concentrations on morphology, mechanical properties, and water barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice starch and CMSr powders were examined. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate the chemical structure, crystallinity, and thermal properties of the CMSr films. As the NaOH concentrations increased, the DS of CMSr powders increased, which affected the morphology of CMSr powders; a polyhedral shape of the native rice starch was deformed. In addition, the increase in NaOH concentrations of the synthesis of CMSr resulted in an increase in water solubility, elongation at break, and water vapor permeability (WVP) of CMSr films. On the other hand, the water contact angle, melting temperature, and the tensile strength of the CMSr films decreased with increasing NaOH concentrations. However, the tensile strength of the CMSr films was relatively low. Therefore, such a property needs to be improved and the application of the developed films should be investigated in the future work

    Synergistic Antimicrobial Activities of Thai Household Essential Oils in Chitosan Film

    No full text
    Foodborne pathogens mostly contaminate ready-to-eat (RTE) meat products by post-process contamination and cause foodborne disease outbreaks. Preventing post-process contamination and controlling microbial growth during storage by packing the RTE meats with active antimicrobial film from chitosan combined with the synergism of Thai household essential oils was investigated. Here, we analyzed antimicrobial activity and mechanical properties of chitosan films incorporated with essential oil of fingerroot (EOF) and holy basil (EOH) based on their fractional inhibitory concentration and isobolograms. We showed that antimicrobial activities of chitosan film and chitosan films formulated with EOF:EOH displayed a dramatical reduction of Listeria monocytogenes Scott A concentration by 7 Log in 12 h. Chitosan film incorporated with EOF:EOH at ratio 0.04:0.04% v/v/w strongly retarded growth of total viable count of L. monocytogenes on vacuum-packed bologna slices during seven days of storage at 4 and 10 °C. Combined EOF and EOH added to chitosan films did not alter thickness, elongation (%) and colors (L*, a* and b*) of the chitosan film, but it increased water vapor transmission rate and decreased film tensile strength. Results suggested that chitosan film had strong antibacterial properties. Its effectiveness in inhibiting foodborne pathogenic bacteria in ready-to-eat meat products was enhanced by adding a combination of EOF:EOH
    • …
    corecore