4 research outputs found

    Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity

    Get PDF
    Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long-term data (over centennial- or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a meta-data analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric datasets overall consisting of 837 lakes. Our results indicate that in most of our datasets summer temperature (Tjul) is strongly associated with spatial trends in modern-day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing Tjul in regions with present day Tjul between 2.5-14 °C. In some areas with Tjul >14 °C chironomid diversity stabilises or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial-interglacial transition (~15,000-11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site-specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity-temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable responses for individual sites

    Interglacial History of a Palaeo-lake and Regional Environment: A Multi-proxy Study of a Permafrost Deposit from Bolshoy Lyakhovsky Island, Arctic Siberia

    Get PDF
    Chironomid, pollen, and rhizopod records from a permafrost sequence at the Bolshoy Lyakhovsky Island (New Siberian Archipelago) document the evolution of a thermokarst palaeo-lake and environmental conditions in the region during the Last Interglacial (MIS 5e, ca. 130120 ka). Open Poaceae and Artemisia associations dominated vegetation at the beginning of the interglacial period, ca. 130 ka. Rare shrub thickets (Salix, Betula nana, Alnus fruticosa) grew in more protected and wetter places as well. Saalian ice wedges started to melt during this time, resulting in the formation of an initial thermokarst water body. The high percentage of semi-aquatic chironomids suggests that a peatland-pool palaeo-biotope existed at the site, when initial water body started to form. A distinct decrease in semi-aquatic chironomid taxa and an increase in lacustrine ones point to a gradual pooling of water in basin, which could in turn create thaw a permanent pond during the subsequent period. The highest relative abundance of Chironomus and Procladius reflects an existence of unfrozen water remaining under the ice throughout the ice-covered period during the later stage of palaeo-lake development. Chironomid record points to three successive stages during the water body evolution: (1) a peatland pool; (2) a pond (i.e., less deep than the maximum ice-cover thickness); and (3) a shallow lake (i.e., more deep than the maximum ice-cover thickness). The evolutionary trend of palaeo-lake points to intensive thermokarst processes occurring in the region during the Last Interglacial. Shrub tundra communities with Alnus fruticosa, Betula nana dominated the vegetation during the interglacial optimum that is evidenced by pollen record. The climate was relatively moist and warm. The results of this study suggest that quantitative chironomid-based temperature reconstructions from the Arctic thermokarst ponds/lakes may be problematic owing to other key environmental factors, such as prolonged periods of winter anoxia and local hydrological/geomorphological processes, controlling the chironomid assemblage

    Holocene thermal maximum in the western Arctic (0-180°W)

    Get PDF
    The spatio-temporal pattern of peak Holocene warmth (Holocene thermal maximum, HTM) is traced over 140 sites across the Western Hemisphere of the Arctic (0–180°W; north of ~60°N). Paleoclimate inferences based on a wide variety of proxy indicators provide clear evidence for warmer-than-present conditions at 120 of these sites. At the 16 terrestrial sites where quantitative estimates have been obtained, local HTM temperatures (primarily summer estimates) were on average 1.6±0.8°C higher than present (approximate average of the 20th century), but the warming was time-transgressive across the western Arctic. As the precession-driven summer insolation anomaly peaked 12–10 ka (thousands of calendar years ago), warming was concentrated in northwest North America, while cool conditions lingered in the northeast. Alaska and northwest Canada experienced the HTM between ca 11 and 9 ka, about 4000 yr prior to the HTM in northeast Canada. The delayed warming in Quebec and Labrador was linked to the residual Laurentide Ice Sheet, which chilled the region through its impact on surface energy balance and ocean circulation. The lingering ice also attests to the inherent asymmetry of atmospheric and oceanic circulation that predisposes the region to glaciation and modulates the pattern of climatic change. The spatial asymmetry of warming during the HTM resembles the pattern of warming observed in the Arctic over the last several decades. Although the two warmings are described at different temporal scales, and the HTM was additionally affected by the residual Laurentide ice, the similarities suggest there might be a preferred mode of variability in the atmospheric circulation that generates a recurrent pattern of warming under positive radiative forcing. Unlike the HTM, however, future warming will not be counterbalanced by the cooling effect of a residual North American ice sheet
    corecore