4 research outputs found

    DynaMod: Dynamische Analyse für modellgetriebene Software-Modernisierung

    Get PDF
    Erfolgreiche Softwaresysteme leben lange. Gleichzeitig sind diese jedoch der enormen Geschwindigkeit der Fortentwicklung der technischen Komponenten und Plattformen unterworfen, so dass die Anwendungen technisch sehr schnell altern. Von dieser Alterung sind jedoch nicht nur Programmiertechniken betroffen, sondern auch die Softwarearchitekturen erodieren sehr schnell. Um dieser Alterung entgegenzuwirken, neue technologische Potentiale zu nutzen und auch auf zukünftige Anforderungen flexibel reagieren zu können, ist eine kontinuierliche Modernisierung von Softwaresystemen erforderlich. Bei der Neuentwicklung von Softwaresystemen hat sich mit der Modellgetriebenen Softwareentwicklung (Model-Driven Software Development, MDSD) ein Konzept etabliert, das eine elegante Lösung dieser Problematik bietet: Anstatt das System vollständig in einer technischen Programmiersprache zu entwickeln, werden fachliche Aspekte mittels geeigneter, abstrakter Modellierungssprachen dargestellt. Hierbei handelt es sich oftmals um sogenannte domänenspezifische Sprachen (Domain Specific Languages, DSLs), die speziell auf die betreffende Anwendungsdomäne zugeschnitten sind und dadurch eine knappe und präzise Formulierung der relevanten Sachverhalte ermöglichen. Die Überführung dieser abstrakten Modelle in technische Artefakte, beispielsweise Quellcode in einer Programmiersprache, wird automatisiert durch Codegeneratoren vorgenommen. Auf diese Weise ist es möglich, durch Anpassung der Generatoren die Implementierung der Modelle zu verändern, ohne Modifikationen an den zugrundeliegenden Modellen vornehmen zu müssen. Im Gegensatz zu Neuentwicklungen stehen bei vielen Bestandssystemen keine derartigen Modelle zur Verfügung. Klassische Ansätze der Modernisierung von Bestandssystemen versuchen stattdessen, die im Quellcode unmittelbar codierten Strukturen des bestehenden Systems automatisiert in Quellcode des Neusystems zu überführen. Da durch diesen Ansatz eine Transformation auf sehr elementarer Ebene stattfindet, kann dieser Ansatz der zuvor erwähnten Erosion der Anwendungsarchitektur nicht begegnen. Zudem ist auch die Übertragung elementarer Strukturen zwischen Programmiersprachen nicht trivial; häufig muss in der Zielsprache das originäre Konstrukt mit zusätzlichem Aufwand simuliert werden. Dadurch kommt es zu einer Aufblähung des Quellcodes, was der Wartbarkeit abträglich ist. Zuletzt bleiben technologische Potentiale der Zielplattform häufig ungenutzt, da das ursprüngliche System letztlich strukturuell unverändert übertragen wird. Im DynaMod-Projekt wurde mit der modellgetriebenen Modernisierung (Model Driven Modernisation, MDM) ein neuer, innovativer Ansatz untersucht, Modelle aus bestehenden Softwaresystemen abzuleiten, die in einem MDSD-Prozess genutzt werden können und dem Bestandssystem auf diese Weise die zuvor beschriebene Flexibilität der Implementierung verleiht. Zur Ableitung dieser Modelle werden nicht nur die statischen Strukturen des Softwaresystems betrachtet; ein besonderer Schwerpunkt ist die Nutzung dynamischer Analyseverfahren, d.h. der Untersuchung des Verhaltens des Softwaresystems zur Laufzeit. Diese dynamischen Analysen erlauben Einblick in die tatsächliche Nutzung des Systems durch die Nutzer und produziert somit Informationen, die zur Modernisierung eines Systems unabdingbar sind. Von besonderem Interesse ist eine gleichzeitige Betrachtung statisch und dynamisch gewonnener Informationen, eine sogenannte hybride Analyse. Hierbei entfaltet die Nutzung abstrakter Modelle eine besondere Stärke, da die Modelle eine Plattform bieten, auf der die verschiedenen Daten zusammengeführt werden können. Auch Daten aus anderen Quellen, beispielsweise Expertenwissen, können den Modellen hinzugefügt werden und führen Wissen auf der Semantikebene hinzu, das automatisiert nicht erhoben werden kann. Auf diese Weise zeigen die Modelle ein strukturiertes und umfangreiches Bild der Anwendung, das als Grundlage für eine Modernisierung dienen kann. Neben der eigentlichen Modernisierung lag ein weiterer Fokus auf der Nutzung der gewonnenen Analysedaten zum systematischen Testen der modernisierten Anwendung. Hier bestand das Ziel darin, Methoden zu entwickeln und zu erproben, die Tests zur Prüfung funktionaler und nicht-funktionaler Eigenschaften der Anwendung aus den Analysedaten generieren können

    Cutting Planes for Low-Rank-Like Concave Minimization Problems

    No full text

    A complete digitization of german herbaria is possible, sensible and should be started now

    No full text
    Plants, fungi and algae are important components of global biodiversity and are fundamental to all ecosystems. They are the basis for human well-being, providing food, materials and medicines. Specimens of all three groups of organisms are accommodated in herbaria, where they are commonly referred to as botanical specimens.The large number of specimens in herbaria provides an ample, permanent and continuously improving knowledge base on these organisms and an indispensable source for the analysis of the distribution of species in space and time critical for current and future research relating to global biodiversity. In order to make full use of this resource, a research infrastructure has to be built that grants comprehensive and free access to the information in herbaria and botanical collections in general. This can be achieved through digitization of the botanical objects and associated data.The botanical research community can count on a long-standing tradition of collaboration among institutions and individuals. It agreed on data standards and standard services even before the advent of computerization and information networking, an example being the Index Herbariorum as a global registry of herbaria helping towards the unique identification of specimens cited in the literature.In the spirit of this collaborative history, 51 representatives from 30 institutions advocate to start the digitization of botanical collections with the overall wall-to-wall digitization of the flat objects stored in German herbaria. Germany has 70 herbaria holding almost 23 million specimens according to a national survey carried out in 2019. 87% of these specimens are not yet digitized. Experiences from other countries like France, the Netherlands, Finland, the US and Australia show that herbaria can be comprehensively and cost-efficiently digitized in a relatively short time due to established workflows and protocols for the high-throughput digitization of flat objects.Most of the herbaria are part of a university (34), fewer belong to municipal museums (10) or state museums (8), six herbaria belong to institutions also supported by federal funds such as Leibniz institutes, and four belong to non-governmental organizations. A common data infrastructure must therefore integrate different kinds of institutions.Making full use of the data gained by digitization requires the set-up of a digital infrastructure for storage, archiving, content indexing and networking as well as standardized access for the scientific use of digital objects. A standards-based portfolio of technical components has already been developed and successfully tested by the Biodiversity Informatics Community over the last two decades, comprising among others access protocols, collection databases, portals, tools for semantic enrichment and annotation, international networking, storage and archiving in accordance with international standards. This was achieved through the funding by national and international programs and initiatives, which also paved the road for the German contribution to the Global Biodiversity Information Facility (GBIF).Herbaria constitute a large part of the German botanical collections that also comprise living collections in botanical gardens and seed banks, DNA- and tissue samples, specimens preserved in fluids or on microscope slides and more. Once the herbaria are digitized, these resources can be integrated, adding to the value of the overall research infrastructure. The community has agreed on tasks that are shared between the herbaria, as the German GBIF model already successfully demonstrates.We have compiled nine scientific use cases of immediate societal relevance for an integrated infrastructure of botanical collections. They address accelerated biodiversity discovery and research, biomonitoring and conservation planning, biodiversity modelling, the generation of trait information, automated image recognition by artificial intelligence, automated pathogen detection, contextualization by interlinking objects, enabling provenance research, as well as education, outreach and citizen science.We propose to start this initiative now in order to valorize German botanical collections as a vital part of a worldwide biodiversity data pool
    corecore