39 research outputs found

    M-CSF Signals through the MAPK/ERK Pathway via Sp1 to Induce VEGF Production and Induces Angiogenesis In Vivo

    Get PDF
    BACKGROUND: M-CSF recruits mononuclear phagocytes which regulate processes such as angiogenesis and metastases in tumors. VEGF is a potent activator of angiogenesis as it promotes endothelial cell proliferation and new blood vessel formation. Previously, we reported that in vitro M-CSF induces the expression of biologically-active VEGF from human monocytes. METHODOLOGY AND RESULTS: In this study, we demonstrate the molecular mechanism of M-CSF-induced VEGF production. Using a construct containing the VEGF promoter linked to a luciferase reporter, we found that a mutation reducing HIF binding to the VEGF promoter had no significant effect on luciferase production induced by M-CSF stimulation. Further analysis revealed that M-CSF induced VEGF through the MAPK/ERK signaling pathway via the transcription factor, Sp1. Thus, inhibition of either ERK or Sp1 suppressed M-CSF-induced VEGF at the mRNA and protein level. M-CSF also induced the nuclear localization of Sp1, which was blocked by ERK inhibition. Finally, mutating the Sp1 binding sites within the VEGF promoter or inhibiting ERK decreased VEGF promoter activity in M-CSF-treated human monocytes. To evaluate the biological significance of M-CSF induced VEGF production, we used an in vivo angiogenesis model to illustrate the ability of M-CSF to recruit mononuclear phagocytes, increase VEGF levels, and enhance angiogenesis. Importantly, the addition of a neutralizing VEGF antibody abolished M-CSF-induced blood vessel formation. CONCLUSION: These data delineate an ERK- and Sp1-dependent mechanism of M-CSF induced VEGF production and demonstrate for the first time the ability of M-CSF to induce angiogenesis via VEGF in vivo

    Decay spectroscopy of Cd-129

    Get PDF
    Excited states of 129^{129}In populated following the β\beta-decay of 129^{129}Cd were experimentally studied with the GRIFFIN spectrometer at the ISAC facility of TRIUMF, Canada. A 480-MeV proton beam was impinged on a uranium carbide target and 129^{129}Cd was extracted using the Ion Guide Laser Ion Source (IG-LIS). β\beta- and γ\gamma-rays following the decay of 129^{129}Cd were detected with the GRIFFIN spectrometer comprising the plastic scintillator SCEPTAR and 16 high-purity germanium (HPGe) clover-type detectors. %, along with the β\beta-particles were detected with SCEPTAR. From the β\beta-γ\gamma-γ\gamma coincidence analysis, 32 new transitions and 7 new excited states were established, expanding the previously known level scheme of 129^{129}In. The logft\log ft values deduced from the β\beta-feeding intensities suggest that some of the high-lying states were populated by the ν0g7/2π0g9/2\nu 0 g_{7/2} \rightarrow \pi 0 g_{9/2} allowed Gamow-Teller (GT) transition, which indicates that the allowed GT transition is more dominant in the 129^{129}Cd decay than previously reported. Observation of fragmented Gamow-Teller strengths is consistent with theoretical calculations.Comment: 13 pages, 9 figures, to be published in Physical Review

    NFATc1 Regulation of TRAIL Expression in Human Intestinal Cells

    Get PDF
    TNF-related apoptosis-inducing ligand (TRAIL; Apo2) has been shown to promote intestinal cell differentiation. Nuclear factor of activated T cells (NFAT) participates in the regulation of a variety of cellular processes, including differentiation. Here, we examined the role of NFAT in the regulation of TRAIL in human intestinal cells. Treatment with a combination of phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187 (Io) increased NFAT activation and TRAIL expression; pretreatment with the calcineurin inhibitor cyclosporine A (CsA), an antagonist of NFAT signaling, diminished NFAT activation and TRAIL induction. In addition, knockdown of NFATc1, NFATc2, NFATc3, and NFATc4 blocked PMA/Io increased TRAIL protein expression. Expression of NFATc1 activated TRAIL promoter activity and increased TRAIL mRNA and protein expression. Deletion of NFAT binding sites from the TRAIL promoter did not significantly abrogate NFATc1-increased TRAIL promoter activity, suggesting an indirect regulation of TRAIL expression by NFAT activation. Knockdown of NFATc1 increased Sp1 transcription factor binding to the TRAIL promoter and, importantly, inhibition of Sp1, by chemical inhibition or RNA interference, increased TRAIL expression. These studies identify a novel mechanism for TRAIL regulation by which activation of NFATc1 increases TRAIL expression through negative regulation of Sp1 binding to the TRAIL promoter

    Shape coexistence in the neutron-deficient lead region: A systematic study of lifetimes in the even-even 188200^{188-200}Hg with GRIFFIN

    Get PDF
    Lifetimes of 21+2^+_1 and 41+4^+_1 states, as well as some negative-parity and non-yrast states, in 188200^{188-200}Hg were measured using γγ\gamma-\gamma electronic fast timing techniques with the LaBr3_3(Ce) detector array of the GRIFFIN spectrometer. The excited states were populated in the ϵ/β+\epsilon/\beta^+-decay of Jπ=7+/2J^\pi =7^+/2^- 188200^{188-200}Tl produced at the TRIUMF-ISAC facility. The deduced B(E2) values are compared to different interacting boson model predictions. The precision achieved in this work over previous ones allows for a meaningful comparison with the different theoretical models of these transitional Hg isotopes, which confirms the onset of state mixing in 190^{190}Hg

    Cytoskeletal control of B cell responses to antigens.

    Get PDF
    The actin cytoskeleton is essential for cell mechanics and has increasingly been implicated in the regulation of cell signalling. In B cells, the actin cytoskeleton is extensively coupled to B cell receptor (BCR) signalling pathways, and defects of the actin cytoskeleton can either promote or suppress B cell activation. Recent insights from studies using single-cell imaging and biophysical techniques suggest that actin orchestrates BCR signalling at the plasma membrane through effects on protein diffusion and that it regulates antigen discrimination through the biomechanics of immune synapses. These mechanical functions also have a role in the adaptation of B cell subsets to specialized tasks during antibody responses

    Identification of the New Isotope ^{244}Md.

    No full text
    corecore