19 research outputs found

    Fecal microbiota transplantation to improve efficacy of immune checkpoint inhibitors in renal cell carcinoma (TACITO trial)

    Get PDF
    Background: Renal cell carcinoma (RCC) is the 6° most common cancer in men and the 8° in women in the USA. In Italy RCC incidence was 11,500 new cases in 2017, while mortality was 3,371 cases in 2015. Increasing evidence suggests that response to immune checkpoint inhibitors (ICIs), a novel treatment for advanced RCC (aRCC) and other epithelial tumors, can be influenced by the patient gut microbiota. Fecal microbiota transplantation (FMT) is a novel treatment option aimed to restore healthy gut microbiota, and is the most effective therapy for recurrent C. difficile infection. Preliminary nonrandomized findings show that FMT is able to improve efficacy of ICIs in patients with advanced melanoma. The aim of this study is to evaluate, through a double-blinded placebo-controlled randomized clinical trial, the efficacy of targeted FMT (from donors who are responding to ICIs) in improving response rates to ICIs in subjects with aRCC. Methods: 50 patients who are about to receive, or have started by <8 weeks, pembrolizumab + axitinib as first-line therapy for aRCC will be enrolled. Exclusion criteria include major comorbidities, concomitant GI or autoimmune disorders, or HIV, HBV, HCV infection, continuative corticosteroid therapy, previous treatment with systemic immune-suppressants or immune-modulatory drugs, antibiotic therapy within 4 weeks prior to enrollment. Stool samples and clinical data will be collected at baseline. Then, patients will be randomized to donor FMT or placebo FMT. They will receive the first infusion by colonoscopy and then oral frozen fecal or placebo capsules (8 capsules t.i.d.) 90 and 180 days after the first FMT. Stool donors will be searched among long-term (>12 months) responders to ICIs, and will be selected by following protocols recommended by international guidelines. Patients in the FMT group will always receive feces from the same donor throughout the three fecal transplants. Frozen fecal batches and frozen fecal capsules will be manufactured according to international guidelines. Patients will be followed-up 7, 15, 30, 90, 180, 270, and 360 days after randomization for clinical evaluation and collection of stool samples. Patients will also undergo radiological assessment at 90, 180, 270 and 360 days after randomization. Microbiome analysis will be performed with shotgun metagenomics. The primary endpoint is the progression-free survival (PFS) at 12 months. Secondary endpoints are: objective response rate at 12 months; overall survival at 12 months; adverse events after FMT; microbiome changes after FMT. Sample size calculation was based on the hypothesis that FMT can improve the 1-year PFS rate from 60% (reported 1-year PFS for SOC) to 80% wen associated to SOC. Clinical trial information: NCT04758507

    The Influence of <i>Helicobacter pylori</i> on Human Gastric and Gut Microbiota

    No full text
    Helicobacter pylori is a Gram-negative bacterium that is able to colonize the human stomach, whose high prevalence has a major impact on human health, due to its association with several gastric and extra-gastric disorders, including gastric cancer. The gastric microenvironment is deeply affected by H. pylori colonization, with consequent effects on the gastrointestinal microbiota, exerted via the regulation of various factors, including gastric acidity, host immune responses, antimicrobial peptides, and virulence factors. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Notably, therapy regimens integrated with probiotics have been shown to reduce the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient’s compliance. In light of the deep impact of gut microbiota alterations on human health, the present article aims to provide an overview of the complex interaction between H. pylori and the gastrointestinal microbiota, focusing also on the consequences of eradication therapies and the effects of probiotic supplementation

    Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease: A systematic review and meta-analysis

    Get PDF
    Fecal microbiota transplantation (FMT) is known to be highly effective in patients with recurrent Clostridioides difficile infection (rCDI), but its role in patients who also suffer from inflammatory bowel disease (IBD) is unclear. Therefore, we performed a systematic review and meta-analysis to evaluate the efficacy and safety of FMT for the treatment of rCDI in patients with IBD.We searched the available literature until November 22, 2022 to identify studies that included patients with IBD treated with FMT for rCDI, reporting efficacy outcomes after at least 8 weeks of follow-up. The proportional effect of FMT was summarized with a generalized linear mixed-effect model fitting a logistic regression accounting for different intercepts among studies.We identified 15 eligible studies, containing 777 patients. Overall, FMT achieved high cure rates of rCDI, 81% for single FMT, based on all included studies and patients, and 92% for overall FMT, based on nine studies with 354 patients, respectively. We found a significant advantage of overall FMT over single FMT in improving cure rates of rCDI (from 80% to 92%, p = 0.0015). Serious adverse events were observed in 91 patients (12% of the overall population), with the most common being hospitalisation, IBD-related surgery, or IBD flare. In conclusion, in our meta-analysis FMT achieved high cure rates of rCDI in patients with IBD, with a significant advantage of overall FMT over single FMT, similar to data observed in patients without IBD. Our findings support the use of FMT as a treatment for rCDI in patients with IBD

    Gut microbiota and immunotherapy of renal cell carcinoma

    No full text
    ABSTRACTThe gut microbiome has recently been proposed as a key player in cancer development and progression. Several studies have reported that the composition of the gut microbiome plays a role in the response to immune checkpoint inhibitors (ICIs). The gut microbiome modulation has been investigated as a potential therapeutic strategy for cancer, mainly in patients undergoing therapy with ICIs. In particular, modulation through probiotics, FMT or other microbiome-related approaches have proven effective to improve the response to ICIs. In this review, we examine the role of the gut microbiome in enhancing clinical responses to ICIs in the treatment of renal cancer

    Fecal microbiota transplantation in gastrointestinal and extraintestinal disorders.

    No full text
    Fecal microbiota transplantation (FMT) is the infusion of feces from a healthy donor into the gut of a recipient to treat a dysbiosis-related disease. FMT has been proven to be a safe and effective treatment for infection, but increasing evidence supports the role of FMT in other gastrointestinal and extraintestinal diseases. The aim of this review is to paint the landscape of current evidence of FMT in different fields of application (including irritable bowel syndrome, inflammatory bowel disease, liver disorders, decolonization of multidrug-resistant bacteria, metabolic disorders and neurological disorders), as well as to discuss the current regulatory scenario of FMT, and hypothesize future directions of FMT

    Risk Factors, Diagnosis, and Management of <i>Clostridioides difficile</i> Infection in Patients with Inflammatory Bowel Disease

    No full text
    Clostridioides difficile infection (CDI) and inflammatory bowel disease (IBD) are two pathologies that share a bidirectional causal nexus, as CDI is known to have an aggravating effect on IBD and IBD is a known risk factor for CDI. The colonic involvement in IBD not only renders the host more prone to an initial CDI development but also to further recurrences. Furthermore, IBD flares, which are predominantly set off by a CDI, not only create a need for therapy escalation but also prolong hospital stay. For these reasons, adequate and comprehensive management of CDI is of paramount importance in patients with IBD. Microbiological diagnosis, correct evaluation of clinical status, and consideration of different treatment options (from antibiotics and fecal microbiota transplantation to monoclonal antibodies) carry pivotal importance. Thus, the aim of this article is to review the risk factors, diagnosis, and management of CDI in patients with IBD

    Key determinants of success in fecal microbiota transplantation: From microbiome to clinic

    No full text
    : Fecal microbiota transplantation (FMT) has achieved satisfactory results in preventing the recurrence of Clostridioides difficile infection, but these positive outcomes have only been partially replicated in other diseases. Several factors influence FMT success, including those related to donors and recipients (including diversity and specific composition of the gut microbiome, immune system, and host genetics) as well as to working protocols (fecal amount and number of infusions, route of delivery, and adjuvant treatments). Moreover, initial evidence suggests that the clinical success of FMT may be related to the degree of donor microbial engraftment. The application of cutting-edge technologies for microbiome assessment, along with changes in the current vision of fecal transplants, are expected to improve FMT protocols and outcomes. Here, we review the key determinants of FMT success and insights and strategies that will enable a close integration of lab-based and clinical approaches for increasing FMT success

    Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota

    Get PDF
    Short-chain fatty acids (SCFAs) play a key role in health and disease, as they regulate gut homeostasis and their deficiency is involved in the pathogenesis of several disorders, including inflammatory bowel diseases, colorectal cancer, and cardiometabolic disorders. SCFAs are metabolites of specific bacterial taxa of the human gut microbiota, and their production is influenced by specific foods or food supplements, mainly prebiotics, by the direct fostering of these taxa. This Review provides an overview of SCFAs’ roles and functions, and of SCFA-producing bacteria, from their microbiological characteristics and taxonomy to the biochemical process that lead to the release of SCFAs. Moreover, we will describe the potential therapeutic approaches to boost the levels of SCFAs in the human gut and treat different related diseases
    corecore